Difference between revisions of "Biomod/2011/Caltech/DeoxyriboNucleicAwesome/Random Walk Formula"
(→Random Walk Formula) 
(→Random Walk Formula) 

Line 13:  Line 13:  
==Random Walk Formula==  ==Random Walk Formula==  
−  Two assumptions are made in our case. 1)  +  Two assumptions are made in our case. 1) The DNA origami is immune to any free floating walkers in solution, meaning that free floating walkers cannot bind to an origami and starts random walking; 2) walkers are immediately absorbed when reaching the rectangles with WGs, despite the presence of two TR2 in the same rectangle. 
−  Let  +  
−  <div class="center" style="width:auto; marginleft:auto; marginright:auto;"><math>h(t;i) = q·h(t1;i1) + r·h(t1;i) + p·h(t1; i + 1)</math></div>  +  Let <math> h(t;i)\!</math> be the probability that the walker reaches 0 for the first time after <math>t\!</math> steps given its starting position being <math>i\!</math>. <math>h(t;i)\!</math> obeys the following difference equation 
+  <div class="center" style="width:auto; marginleft:auto; marginright:auto;"><math>h(t;i) = q·h(t1;i1) + r·h(t1;i) + p·h(t1; i + 1)\!</math></div>  
+  
+  for <math>t = 1,2,3,...\!</math> and <math>i = 1,2,3,...,N1\!</math>. We define <math>h(t;0)= 1\!</math> <math>if\!</math> <math>t = 0\!</math>; <math>h(t;0)= 0\!</math> <math>if\!</math> <math>t > 0\!</math>. Also, <math>h(t;i) = 0\!</math> <math>for\!</math> <math>t < i\!</math>.  
+  
+  When <math>i = N\!</math> we have  
+  <div class="center" style="width:auto; marginleft:auto; marginright:auto;"><math>h(t;N) = αh(t1;N)+ βh(t1; N1) \!</math></div>  
+  
+  The generating function for <math>h(t;i)\!</math> can be expressed as <math>H_i (s) = \sum_{t=1}^∞ h(t;1)s^t</math>, <math> s <1\!</math> (Feller, 1971).  
{{Template:DeoxyriboNucleicAwesomeFooter}}  {{Template:DeoxyriboNucleicAwesomeFooter}} 
Revision as of 05:53, 2 October 2011
Sunday, December 17, 2017

Random Walk FormulaGeneral Modeling IdeaThe random walk on DNA origami can be modeled as one dimensional random walk with a reflecting and an absorbing barrier (Figure 1). Tracks in the same column are grouped into rectangles, and each step is defined as walking from one rectangle to an adjacent one.
Consider a random walk on a line segment with N+1 sites denoted by integers (0,1,2, … , N) (Figure 2). The walker starts random walk at site i, 0 < i ≤ N. Let p be the probability for the walker to move one segment to the left, q be the probability for the walker to move one segment to the right. The probability for the walker to stay at a particular site for the next unit time is thus r = 1 – p – q. When the walker reaches site N, the partially reflecting barrier, it has a probability of β to be reflected back to site N – 1, and a probability of α = 1 – β to stay at site N in the next unit time. When reaching site 0, the absorbing barrier, it stays there for 100% probability and the random walk ends. Random Walk FormulaTwo assumptions are made in our case. 1) The DNA origami is immune to any free floating walkers in solution, meaning that free floating walkers cannot bind to an origami and starts random walking; 2) walkers are immediately absorbed when reaching the rectangles with WGs, despite the presence of two TR2 in the same rectangle. Let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle h(t;i)\!} be the probability that the walker reaches 0 for the first time after Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle t\!} steps given its starting position being Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle i\!} . Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle h(t;i)\!} obeys the following difference equation Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle h(t;i) = q·h(t1;i1) + r·h(t1;i) + p·h(t1; i + 1)\!}
for Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle t = 1,2,3,...\!} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle i = 1,2,3,...,N1\!} . We define Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle h(t;0)= 1\!} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle if\!} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle t = 0\!} ; Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle h(t;0)= 0\!} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle if\!} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle t > 0\!} . Also, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle h(t;i) = 0\!} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle for\!} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle t < i\!} . When Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle i = N\!} we have Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle h(t;N) = αh(t1;N)+ βh(t1; N1) \!}
The generating function for Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle h(t;i)\!} can be expressed as Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle H_i (s) = \sum_{t=1}^∞ h(t;1)s^t} , Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle s <1\!} (Feller, 1971).
