Difference between revisions of "Biomod/2011/Caltech/DeoxyriboNucleicAwesome/Protocols"

From OpenWetWare
Jump to: navigation, search
(Normalizing SPEX Data in MATLAB)
Line 32: Line 32:
===Normalizing SPEX Data in MATLAB===
===Normalizing SPEX Data in MATLAB===
:''More detailed article: [[Biomod/2011/Caltech/DeoxyriboNucleicAwesome/Protocols/MATLAB|MATLABAnalysis]]''
:''More detailed article: [[Biomod/2011/Caltech/DeoxyriboNucleicAwesome/Protocols/MATLAB|MATLAB Analysis]]''

Revision as of 00:59, 3 November 2011


Monday, January 22, 2018










Most of the sequences were from Lulu Qian’s sequences, designed as described in [1]. Modifications were added using a computer program NUPACK, and staple sequences for the rectangular origami were taken from Rothemund’s [7]. All oligonucleotides were ordered from Integrated DNA Technologies (IDT) Inc. Most of the DNA molecules were ordered standard desalted and unpurified, and modified molecules are ordered HPLC purified. Staple strands were ordered in wet plate form at 150uM in 1x TE buffer. Dried DNA was reconstituted in an appropriate amount of ddH2O, and quantified with the biophotometer.

More detailed article about quantification protocol : Quantitation

Buffer conditions

1x TE/Mg2+ (TE=Tris-EDTA, Tris 40 mM, EDTA 2 mM, and Magnesium acetate, 12.5 mM, pH 8.0) buffer was used for all experiments.

Gel Electrophoresis/ Gel Purification

5% polyacrylamide gels of 1 mm in thickness were used. Native gel was polymerized by mixing 3.75 ml 19:1 40% polyacrylamide, 1 ml 10x TAE/Mg++, 5.25 ml ddH2O, 60 μl 10% APS, 6 μl TEMED. Native gels were run at 150V at 25 ºC. 1x TAE/Mg2+ was used as a running buffer. Gels were stained with SybrGold for 15 min and then scanned with Quantity 1 FX scanner. Some complexes were annealed using PCR machine and gel purified using bigger gel. Same recipe was used to make native gel. Glycerol was used as a loading dye for the modified strands. Under UV light, the bands were cut and DNA was obtained by diffusion in 1x TE/Mg2+ buffer for 48 hours.

More detailed article about gel puriciation protocol: GelPurification

DNA origami formation

Rectangular DNA origami consists of M13 viral DNA and 202 DNA staples. Staples at the side of the origami were not included in the 202 staples to avoid the stacking problem. Sometimes, a probe at the walker start site was intentionally left out, making a hole in the middle of the origami. M13 scaffold DNA and staple strands were mixed in 1x TE/Mg2+ buffer with molar ratio of 1:4 between the M13 and staple strands. For the speed of assembly, origami were annealed at 90nM, and diluted into different final concentration for the purpose of various experiments; 15 nM of M13 were used for SPEX experiment, and 10 nM, 5 nM, 1 nM for AFM experiment. Origami was annealed by heating up to 90 ºC then cooling down to 20 ºC at 1 ºC/min using an Eppendorf PCR machine. After annealing, tracks were added to the annealed origami at 1:6 ratio of M13 to tracks. Walker goal and a walker start complex which is a preannealed complex “walker – walker inhibitor – track1 – probe for track 1” were also added to the origami at 1:1 ratio of M13 to strands. Mixed solution was incubated at 37 ºC overnight.

More detailed article about origami puriciation protocol: Origami Purification

Atomic force microscopy (AFM)

5 μl of sample was deposited onto a freshly cleaved mica, and 20 μl of 1x TE/Mg2+ buffer was added. 200 μl of 1x TE/Mg2+ buffer was added to the liquid cell and the sample was scanned in a tapping mode with DNP tips.

Spectrofluorimeter (SPEX)

After cuvettes are cleaned with ddH2O and 70% ethanol, 10 nM - 1 uM sample was loaded in 1.5mL 1x TE/Mg2+ buffer into each cuvette for kinetics experiment in solution. For random walking experiment on origami, 200 ul of 15 nM samples were used. Fluorescent level of each cuvette was observed in real time.

More detailed article about SPEX protocol: SPEX

Normalizing SPEX Data in MATLAB

More detailed article: MATLAB Analysis