Biomod/2013/Aarhus/Supplementary/References

From OpenWetWare

Jump to: navigation, search

Contents


References

  1. Han, D.R. et al. DNA Origami with Complex Curvatures in Three-Dimensional Space. Science 332, 342-346 (2011) [1] [Han]
  2. Y. Ke et al. Multilayer DNA Origami Packed on a Square Lattice. J. Am. Chem. Soc. 131, 15903-15908 (2009). [1]

    [Ke]

  3. Douglas, S.M. et al. Rapid prototyping of 3D DNA-origami shapes with caDNAno. Nucleic Acids Res. 37, 5001-5006 (2009) [1]

    [Douglas]

  4. Zhang, Z. et al. Self-assembly of DNA origami and single-stranded tile structures at room temperature. Angew. Chem. Int. Ed. Engl. 52, 9219-23 (2013) [1]

    [Zhang]

  5. Kim, D. N. et al. Quantitative prediction of 3D solution shape and flexibility of nucleic acid nanostructures. Nucleic Acids Res. 40, 2862-2868 (2012). [1]

    [Kim]

  6. Kim, K. N. et al. Comparison of methods for orienting and aligning DNA origami. Soft Matter 7, 4636-4643 (2011). [1]

    [KimKN]

  7. Rothemund, P. W. K. Folding DNA to create nanoscale shapes and patterns. Nature 440, 297-302 (2006)[1]

    [Rothemund]

  8. Teruya, K. et al. Semisynthesis of a protein with cholesterol at the C-terminal, targeted to the cell membrane of live cells. K. Protein J. 29, 493–500 (2010). [1]

    [Teruya]

  9. Pedersen, B. W. et al. Single Cell Responses to Spatially-Controlled Photosensitized Production of Extracellular Singlet Oxygen. Photochem. Photobiol. 87, 1077-1091 (2011) [1]

    [Pedersen]

  10. O. Mendes et al. MMP2 role in breast cancer brain metastasis development and its regulation by timp2 and erk1/2. Clin. Exp. Metastasis, 24, 341-351 (2007). [1]

    [Mendes]

  11. D. E. Kleiner et al. Matrix metalloproteinases and metastasis. Cancer. Chemother. Pharmacol., 43, 42-51 (1999). [1]

    [Kleiner]

  12. R. Visse et al. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: Structure, function, and biochemistry. Circ. Res., 92, 827-839 (2003). [1]

    [Visse]

  13. E. Morgunova et al. Structural insight into the complex formation of latent matrix metalloproteinase 2 with tissue inhibitor of metalloproteinase 2. Proc. Natl. Acad. Sci. USA, 99, 7414-7419 (2002). [1]

    [Morgunova]

  14. E. I. Chen et al. Smith. A unique substrate recognition profile for matrix metalloproteinase-2. J. Biol. Chem., 277, 4485-4491 (2002). [1]

    [Chen]

  15. J. N. Zadeh et al. Nucleic acid sequence design via efficient ensemble defect optimization. J. Comput. Chem., 32, 439-452 (2011). [1]

    [Zadeh]

  16. T. Moriguchi et al. Synthesis and properties of aminoacylamido-amp chemical optimization for the construction of an n-acyl phosphoramidate linkage. J. Org. Chem., 65, 8229-8238 (2000). [1]

    [Moriguchi]

  17. J. Robles et al. Peptide-oligonucleotide hybrids with n-acylphosphoramidate linkages. J. Org. Chem., 60, 4856-4861 (1995). [1]

    [Robles]

  18. Langecker, M. et al. Synthetic lipid membrane channels formed by designed DNA nanostructures. Science 338, 932–936 (2012)[1]

    [Langecker]

  19. Simeone, L. et al. Cholesterol-based nucleolipid-ruthenium complex stabilized by lipid aggregates for antineoplastic therapy. Bioconjugate Chem. 23, 758–770 (2012) [1]

    [Simeone]

  20. Cló, E. et al. DNA-programmed control of photosensitized singlet oxygen production. J. Am. Chem. Soc. 128, 4200–4201 (2006).[1]

    [Clo]

  21. Kochevar, I. E. et al. Singlet Oxygen , but not Oxidizing Radicals , Induces Apoptosis in HL-60 Cells. Photochem. Photobiol. 72, 548–553 (2000). [1]

    [Kochevar]

  22. Mitsunaga, M. et al.' Cancer cell-selective in vivo near infrared photoimmunotherapy targeting specific membrane molecules. Nat. Med. 17, 1685–1691 (2011). [1]

    [Mitsunaga]

  23. Frost, C. G. et al. Selectivity in Palladium Catalysed Allylic Substitution. Tetrahedron: Asymmetry. 3, 1089-1122 (1992)[1]

    [Frost]

  24. Funder, E. et al. Synthesis of Dopamine and Serotonin Derivatives for Immobilization on a Solid Support. J. Org. Chem. 77, 3134-3142 (2012)[1]

    [Funder]

  25. Jahn, K. et al. Functional patterning of DNA origami by parallel enzymatic modification. Bioconjugate Chem. 22, 819–823 (2011).[1]

    [Jahn]

  26. Asakura, J. et al. Cerium (IV) catalyzed iodination at C5 uracil nucleosides. Tetrahedron Lett. 29, 2855–2858 (1988).[1]

    [Asakura]

  27. Tahmassebi, D. et al. Substituent Effects on the Stability of Sulfenes. Phosphorus, Sulfur Silicon Relat. Elem. 181, 2745–2755 (2006).[1]

    [Tahmassebi]

  28. Jäger, S. et al. A versatile toolbox for variable DNA functionalization at high density. J. Am. Chem. Soc. 127, 15071–15082 (2005). [1]

    [Jager]

  29. Caton-Williams, J. et al. Protection-Free One-Pot Synthesis of 2’-Deoxynucleoside 5'-Triphosphates and DNA Polymerization. Org. Lett. 13, 4156–4159 (2011).[1]

    [Caton-Williams]

  30. Patel, L. N. et al. Cell penetrating peptides: Intracellular pathways and pharmaceutical perspectives. Pharm. Res. 24, 1977-92 (2007). [1]

    [Patel]

  31. Dempsey, C. E. et al. The actions of melittin on membranes. Biochim. Biophys. Acta 1031, 143-61 (1990) [1]

    [Dempsey]

  32. Li, W. et al. GALA: A designed synthetic pH-responsive amphipathic peptide with applications in drug and gene delivery. Adv. Drug Deliv. 56, 967-85 (2004) [1].

    [Li]

  33. Veronese, F. M. et al. PEGylation, successful approach to drug delivery. Drug Discov. Today '21, 1451-8 (2005) [1]

    [Veronese]

  34. Bramsen, J. B. et al. Improved silencing properties using small internally segmented interfering RNAs. Nucleic Acids Res. 35, 5886-97 (2007). [1].

    [Bramsen]

  35. Oleinick, N. L. et al. The role of apoptosis in response to photodynamic therapy: what, where, why, and how. Photochem. Photobiol. Sci. 1, 1-21 (2002).[1]

    [Oleinick]

  36. H. E. Gottlieb et al. NMR Chemical Shifts of Common Laboratory Solvents as Trace Impurities. J. Org. Chem. 62 7512-7515 (1997). [1]

    [Gottlieb]

  37. H. A. Behanna et al. Coassembly of amphiphiles with opposite peptide polarities into nanofibers. J. Am. Chem. Soc. 127, 1193-1200 (2005). [1]

    [Behanna]

  38. Z. J. Gartner et al. Expanding the reaction scope of dna-templated synthesis. Angew. Chem. Int. Ed, 41, 1796-1800 (2002). [1]

    [Gartner]

  39. Hussey, S. L. et al.. Synthesis of chimeric 7α-substituted estradiol derivatives linked to cholesterol and cholesterylamine. Org. Lett. 4, 415–418 (2002). [1]

    [Hussey]

  40. Horwitz, J. P. et al. Nucleosides. IX. The formation of 2’,3'-unsaturated pyrimidine nucleosides via a novel beta-elimination reaction. J. Org. Chem. 121, 205–211 (1966). [1]

    [Horwitz]

  41. Trybulski, E. J. et al. The synthesis and biochemical pharmacology of enantiomerically pure methylated oxotremorine derivatives. J. Med. Chem. 36, 3533–3541 (1993).[1]

    [Trybulski]

  42. Arian, D. et al. A nucleic acid dependent chemical photocatalysis in live human cells. Chem. Eur. J. 16, 288–295 (2010).[1]

    [Arian]

  43. Wang, H.M. et al. Chemical constituents from the leaves of Nelumbo nucifera Gaertn. cv. Rosa-plena. Chem. Nat Comp. 47, 316-318 (2011)[1]

    [Wang]

  44. McGuigan, C. et al. Discovery of a new family of inhibitors of human cytomegalovirus (HCMV) based upon lipophilic alkyl furano pyrimidine dideoxy nucleosides: action via a novel non-nucleosidic mechanism. J. Med. Chem. 47, 1847–1851 (2004). [1]

    [McGuigan]

  45. Geisse, N. A. et al. AFM and Combined Optical Techniques. Mater. Today 12, 40–45 2009. [1].

    [Geisse]

  46. Sinha, N. D. et al. Polymer support oligonucleotide synthesis. XVIII: use of β-cyanoethyl-N,N-dialkylamino-/N-morpholino phosphoramidite of deoxynucleosides for the synthesis of DNA fragments simplifying deprotection and isolation of the final product. Nucl. Acids Res. 12, 4539–4557 (1984).[1]

    [Sinha]

  47. van Meerloo, J. et al. Cell sensitivity assays: The MTT assay. Methods Mol. Biol. 731, 237-45 (2011)[1]

    [VanMeerloo]

  48. H. C. Kolb, et al. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew. Chem. Int. Ed 40, 2004–2021 (2001).

    [Kolb]

  49. Bloomfield, V. A. et al. Static and dynamic light scattering from aggregating particles. Biopolymers 54, 168-172 (2000).

    [Bloomfield]

  50. Dalby, B. et al. Advanced transfection with Lipofectamine 2000 reagent: Primary neurons, siRNA, and high-throughput applications. Methods 33, 95-103 (2004). [1]

    [Dalby]

  51. Ford, S. R. et al. Improvements in the application of firefly luciferase assays. Methods Mol. Biol. 102, 3-20 (1998). [1]

    [Ford]

  52. Merrifield, R. B. Solid-phase peptide synthesis. Adv. Enzymol. Relat. Areas. Mol. Biol. 32 221-296 (1969).

    [Merrifield]

  53. Harris, D. C. Quantitative Chemical Analysis Ch. 21. (W. H. Freeman and Company, New York, 2010).

    [HarrisLCMS]

  54. Friebolin, H. Basic One- and Two-Dimensional NMR Spectroscopy (Wiley Verlag GMBH & Ci. KGaA., Weinheim, 2005)

    [Friebolin]

  55. Delarue, M. et al. Crystal structures of a template-independent DNA polymerase: murine terminal deoxynucleotidyltransferase. EMBO J. 21, 427-439 (2002). [1]

    [Delarue]

  56. Prasad, P. N. Bioimaging: Principles and Techniques, in Introduction to Biophotonics. (John Wiley & Sons, Inc., Hoboken, NJ, USA., 2004) [1]

    [Prasad]

  57. Thuring, R. W. J. et al. A freeze-squeeze method for recovering long DNA from agarose gels. Anal. Biochem. 66, 213-220 (1975). [1]

    [Thuring]

  58. Harris, D. C. Quantitative Chemical Analysis Ch. 24. (W. H. Freeman and Company, New York, 2010).

    [HarrisHPLC]

  59. Harris, D. C. Quantitative Chemical Analysis Ch. 17. (W. H. Freeman and Company, New York, 2010).

    [HarrisSpectro]

  60. Shapiro, D. J. Quantitative ethanol precipitation of nanogram quantities of DNA and RNA. Anal. Biochem. 110, 229-231 (1981). [1]

    [Shapiro]


SITEMAP | BIOMOD 2013 NANO CREATORS | Aarhus University

Sigma - Aldrich VWR International Promega kem-en-tec Centre For Dna Nanotechnology Dansk Tennis Fond

Personal tools