User:Torsten Waldminghaus/Notebook/Methylation array: Difference between revisions

From OpenWetWare
Jump to navigationJump to search
No edit summary
No edit summary
Line 70: Line 70:
*found with http://mobyle.pasteur.fr/cgi-bin/MobylePortal/portal.py?form=fuzznuc
*found with http://mobyle.pasteur.fr/cgi-bin/MobylePortal/portal.py?form=fuzznuc


{| border="3"
! Name (localisation of HphI site) !! MseI sites !! GATCs !! Sequence !! Size of MseI fragment!!Oligos for qPCR
|-
| 761873 || || || || || ||>gi|49175990:761139-761970 Escherichia coli str. K-12 substr. MG1655, complete genome
'''''TTAA'''''AGGCACCGGTGTGGGTGGTCGTCTGACTCGTGAAGATGTGGAAAAACATCTGGCGAAAGCCCCGGC
GAAAGAGTCTGCTCCGGCAGCGGCTGCTCCGGCGGCGCAACCGGCTCTGGCTGCACGTAGTGAAAAACGT
GTCCCGATGACTCGCCTGCGTAAGCGTGTGGCAGAGCGTCTGCTGGAAGCGAAAAACTCCACCGCCATGC
TGACCACGTTCAACGAAGTCAACATGAAGCCGATTATG'''GATC'''TGCGTAAGCAGTAC'''GGTGA'''AGCGTTTGA
AAAACGCCACGGCATCCGTCTGGGCTTTATGTCCTTCTACGTGAAAGCGGTGGTTGAAGCCCTGAAACGT
TACCCGGAAGTGAACGCTTCTATCGACGGCGATGACGTGGTTTACCACAACTATTTCGACGTCAGCATGG
CGGTTTCTACGCCGCGCGGCCT'''GGTGA'''CGCCGGTTCTGCGTGATGTCGATACCCTCGGCATGGCAGACAT
CGAGAAGAAAATCAAAGAGCTGGCAGTCAAAGGCCGTGACGGCAAGCTGACCGTTGAA'''GATC'''TGACCGGT
GGTAACTTCACCATCACCAACGGTGGTGTGTTCGGTTCCCTGATGTCTACGCC'''GATC'''ATCAACCCGCCGC
AGAGCGCAATTCTGGGTATGCACGCTATCAAA'''GATC'''GTCCGATGGCGGTGAATGGTCAGGTTGA'''GATC'''CT
GCCGATGATGTACCTGGCGCTGTCCTAC'''GATC'''ACCGTCT'''GATC'''GATGGTCGCGAATCCGTGGGCTTCCTG
GTAAC'''GATC'''AAAGAGTTGCTGGAA'''GATC'''CGACGCGTCTGCTGCTGGACGTGTAGTAGT'''''TTAA''''' ||
|-
|MboII || GAAGA || Star activity; reaction at 37°C; heatinactivation at 20 min 65°C||http://www.fermentas.com/catalog/re/mboii.htm
|-
|TaqI || TCGA ||No star activity; reaction at 65 °C; no heatinactivation after 20 min 80°C ||http://www.fermentas.com/catalog/re/taqi.htm
|}


<biblio>
<biblio>

Revision as of 08:28, 26 May 2008

Idea

  • Analyse the methylation of GATC sites genomewide in E. coli.

Notes

  • Løbner-Olesen et al, 2003 [1] used a aroK17::cat strain to have more hemimethylation in the cell, since a polar effect on dam leads to a reduced Dam content in the cell (only 30% of wt [2]). Could be used as control and for interesting analysis.
  • methylation in different strains could be interesting:
    • dam-overproduction
    • seqA deletion, over-production, under-production
    • synchronized cells
    • does introduction of a GATC cluster alter methylation of surrounding sites?
  • what about GATC sites in datA? sequestration?
  • one could compare methylation in protein coding regions with intergenic regions and RNA coding.
  • one could analyse effect of distance to oriC and density of GATCs
  • As independent method and first step one could analyse cutting by methylation sensitive REN with qPCR
    • on whole chromosome
    • clusters and isolated GATCs
    • coding regions and intergenic regions

Possible restriction enzymes that are Dam methylation sensitive:

Enzyme Site Notes Link
HphI GGTGA No star activity; reaction at 37°C; heatinactivation at 20 min 65°C http://www.fermentas.com/catalog/re/hphi.htm
MboII GAAGA Star activity; reaction at 37°C; heatinactivation at 20 min 65°C http://www.fermentas.com/catalog/re/mboii.htm
TaqI TCGA No star activity; reaction at 65 °C; no heatinactivation after 20 min 80°C http://www.fermentas.com/catalog/re/taqi.htm
  • HphI seems to be a goog choice since it can be heatinactivated and has no star activity (does not cleave unspecific when DNA is overdigested).
  • In unsynchronized cultures the detection of hemimethylation will be difficult. If every GATC is hemimethylated for about 1 min and replication of the chromosome takes about 50 min, than about 2% of a specific GATC will be in a hemimethylated state giving only 1% cut with an overlapping enzyme.
    • One possibility to make the restriction outcome higher could be to use sites like ggtgatcacc that have two HphI restriction sites overlapping one GATC. This should give a doubling in cutting at that site compared to only one HphI site. However, a 10bp long inverted repeat might not give a representative result for GATC methylation because some whatever protein could bind there. The E. coli K12 genome contains 33 ggtgatcacc sites:
Start     End Pattern_name Mismatch Sequence
118460  118469 pattern1            . GGTGATCACC
143911  143920 pattern1            . GGTGATCACC
210581  210590 pattern1            . GGTGATCACC
282472  282481 pattern1            . GGTGATCACC
330621  330630 pattern1            . GGTGATCACC
379605  379614 pattern1            . GGTGATCACC
405197  405206 pattern1            . GGTGATCACC
599247  599256 pattern1            . GGTGATCACC
636380  636389 pattern1            . GGTGATCACC
681039  681048 pattern1            . GGTGATCACC
685084  685093 pattern1            . GGTGATCACC
712647  712656 pattern1            . GGTGATCACC
826095  826104 pattern1            . GGTGATCACC
834158  834167 pattern1            . GGTGATCACC
854836  854845 pattern1            . GGTGATCACC
900826  900835 pattern1            . GGTGATCACC
1065260 1065269 pattern1            . GGTGATCACC
1107328 1107337 pattern1            . GGTGATCACC
1363023 1363032 pattern1            . GGTGATCACC
2152717 2152726 pattern1            . GGTGATCACC
2358426 2358435 pattern1            . GGTGATCACC
2540379 2540388 pattern1            . GGTGATCACC
2953039 2953048 pattern1            . GGTGATCACC
3010031 3010040 pattern1            . GGTGATCACC
3042067 3042076 pattern1            . GGTGATCACC
3268923 3268932 pattern1            . GGTGATCACC
3528134 3528143 pattern1            . GGTGATCACC
3540084 3540093 pattern1            . GGTGATCACC
3607305 3607314 pattern1            . GGTGATCACC
3858080 3858089 pattern1            . GGTGATCACC
4238710 4238719 pattern1            . GGTGATCACC
4292770 4292779 pattern1            . GGTGATCACC
4463247 4463256 pattern1            . GGTGATCACC


Name (localisation of HphI site) MseI sites GATCs Sequence Size of MseI fragment Oligos for qPCR
761873 49175990:761139-761970 Escherichia coli str. K-12 substr. MG1655, complete genome

TTAAAGGCACCGGTGTGGGTGGTCGTCTGACTCGTGAAGATGTGGAAAAACATCTGGCGAAAGCCCCGGC GAAAGAGTCTGCTCCGGCAGCGGCTGCTCCGGCGGCGCAACCGGCTCTGGCTGCACGTAGTGAAAAACGT GTCCCGATGACTCGCCTGCGTAAGCGTGTGGCAGAGCGTCTGCTGGAAGCGAAAAACTCCACCGCCATGC TGACCACGTTCAACGAAGTCAACATGAAGCCGATTATGGATCTGCGTAAGCAGTACGGTGAAGCGTTTGA AAAACGCCACGGCATCCGTCTGGGCTTTATGTCCTTCTACGTGAAAGCGGTGGTTGAAGCCCTGAAACGT TACCCGGAAGTGAACGCTTCTATCGACGGCGATGACGTGGTTTACCACAACTATTTCGACGTCAGCATGG CGGTTTCTACGCCGCGCGGCCTGGTGACGCCGGTTCTGCGTGATGTCGATACCCTCGGCATGGCAGACAT CGAGAAGAAAATCAAAGAGCTGGCAGTCAAAGGCCGTGACGGCAAGCTGACCGTTGAAGATCTGACCGGT GGTAACTTCACCATCACCAACGGTGGTGTGTTCGGTTCCCTGATGTCTACGCCGATCATCAACCCGCCGC AGAGCGCAATTCTGGGTATGCACGCTATCAAAGATCGTCCGATGGCGGTGAATGGTCAGGTTGAGATCCT GCCGATGATGTACCTGGCGCTGTCCTACGATCACCGTCTGATCGATGGTCGCGAATCCGTGGGCTTCCTG GTAACGATCAAAGAGTTGCTGGAAGATCCGACGCGTCTGCTGCTGGACGTGTAGTAGTTTAA ||

MboII GAAGA Star activity; reaction at 37°C; heatinactivation at 20 min 65°C http://www.fermentas.com/catalog/re/mboii.htm
TaqI TCGA No star activity; reaction at 65 °C; no heatinactivation after 20 min 80°C http://www.fermentas.com/catalog/re/taqi.htm
  1. Løbner-Olesen A, Marinus MG, and Hansen FG. Role of SeqA and Dam in Escherichia coli gene expression: a global/microarray analysis. Proc Natl Acad Sci U S A. 2003 Apr 15;100(8):4672-7. DOI:10.1073/pnas.0538053100 | PubMed ID:12682301 | HubMed [Lobner-Olesen-2003]
  2. Løbner-Olesen A, Boye E, and Marinus MG. Expression of the Escherichia coli dam gene. Mol Microbiol. 1992 Jul;6(13):1841-51. DOI:10.1111/j.1365-2958.1992.tb01356.x | PubMed ID:1630320 | HubMed [Lobner-Olesen-1992]
  3. Pfister S, Schlaeger C, Mendrzyk F, Wittmann A, Benner A, Kulozik A, Scheurlen W, Radlwimmer B, and Lichter P. Array-based profiling of reference-independent methylation status (aPRIMES) identifies frequent promoter methylation and consecutive downregulation of ZIC2 in pediatric medulloblastoma. Nucleic Acids Res. 2007;35(7):e51. DOI:10.1093/nar/gkm094 | PubMed ID:17344319 | HubMed [Pfister-2007]
  4. Braun RE and Wright A. DNA methylation differentially enhances the expression of one of the two E. coli dnaA promoters in vivo and in vitro. Mol Gen Genet. 1986 Feb;202(2):246-50. DOI:10.1007/BF00331644 | PubMed ID:3010047 | HubMed [Braun-1986]
  5. Kücherer C, Lother H, Kölling R, Schauzu MA, and Messer W. Regulation of transcription of the chromosomal dnaA gene of Escherichia coli. Mol Gen Genet. 1986 Oct;205(1):115-21. DOI:10.1007/BF02428040 | PubMed ID:3025553 | HubMed [Kucherer-1986]
  6. Campbell JL and Kleckner N. E. coli oriC and the dnaA gene promoter are sequestered from dam methyltransferase following the passage of the chromosomal replication fork. Cell. 1990 Sep 7;62(5):967-79. DOI:10.1016/0092-8674(90)90271-f | PubMed ID:1697508 | HubMed [Campbell-1990]

All Medline abstracts: PubMed | HubMed