User:Timothee Flutre/Notebook/Postdoc/2011/11/10

From OpenWetWare
Revision as of 09:38, 21 November 2012 by Timothee Flutre (talk | contribs) (→‎Entry title: first version)
Jump to navigationJump to search
Project name <html><img src="/images/9/94/Report.png" border="0" /></html> Main project page
<html><img src="/images/c/c3/Resultset_previous.png" border="0" /></html>Previous entry<html>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</html>Next entry<html><img src="/images/5/5c/Resultset_next.png" border="0" /></html>

Bayesian model of univariate linear regression for QTL detection

See Servin & Stephens (PLoS Genetics, 2007).


  • Data: let's assume that we obtained data from N individuals. We note [math]\displaystyle{ y_1,\ldots,y_N }[/math] the (quantitative) phenotypes (e.g. expression level at a given gene), and [math]\displaystyle{ g_1,\ldots,g_N }[/math] the genotypes at a given SNP (as allele dose, 0, 1 or 2).


  • Goal: we want (i) to assess the evidence in the data for an effect of the genotype on the phenotype, and (ii) estimate the posterior distribution of this effect.


  • Assumptions: the relationship between genotype and phenotype is linear; the individuals are not genetically related; there is no hidden confounding factors in the phenotypes.


  • Likelihood:

[math]\displaystyle{ \forall i \in \{1,\ldots,N\}, \; y_i = \mu + \beta_1 g_i + \beta_2 \mathbf{1}_{g_i=1} + \epsilon_i }[/math]

with: [math]\displaystyle{ \epsilon_i \overset{i.i.d}{\sim} \mathcal{N}(0,\tau^{-1}) }[/math]

where [math]\displaystyle{ \beta_1 }[/math] is in fact the additive effect of the SNP, noted [math]\displaystyle{ a }[/math] from now on, and [math]\displaystyle{ \beta_2 }[/math] is the dominance effect of the SNP, [math]\displaystyle{ d = a k }[/math].

Let's now write in matrix notation:

[math]\displaystyle{ Y = X B + E }[/math]

where [math]\displaystyle{ B = [ \mu \; a \; d ]^T }[/math]

which gives the following conditional distribution for the phenotypes:

[math]\displaystyle{ Y | X, B, \tau \sim \mathcal{N}(XB, \tau^{-1} I_N) }[/math]


  • Priors: conjugate

[math]\displaystyle{ \tau \sim \Gamma(\kappa/2, \, \lambda/2) }[/math]

[math]\displaystyle{ B | \tau \sim \mathcal{N}(\vec{0}, \, \tau^{-1} \Sigma_B) \text{ with } \Sigma_B = diag(\sigma_{\mu}^2, \sigma_a^2, \sigma_d^2) }[/math]