User:Sasha A. Weitzman/Notebook/Biology 210 at AU

From OpenWetWare
Jump to navigationJump to search

Identifying Algae and Protists

Introduction


Last week each group collected a small sample from their respective transect to create a hay infusion. This week, the sample was explored under a microscope to look for biotic life. A dichotomous key was used simultaneously, which follows a series of morphological questions to identify organisms. We used this method to attempt to identify unicellular prokaryotes and eukaryotes from two niches of the hay infusion. Prokaryotes differ from eukaryotes in that eukaryotes contain a membrane bound nucleus and more advanced organelles. In addition, there are two kinds of eukaryotes, algae, which photosynthesize, and protists, which consume nutrients to get energy. By observing the life forms in the hay infusion, each group can gain a better understanding of its hay infusion's ecosystem.

Methods


Initially, the hay infusion jar was retrieved and two wet mounts were made from two niches of the jar, in this case the top and the bottom. The wet mounts were made by pipetting a small drop onto the glass mount and covering it with a cover slip. The samples were then examined under a microscope and the dichotomous key was used when an organism was spotted. We were instructed to find 4 organisms, and record their characteristics such as shape, motility, size, etc. After 4 organisms were identified, in our case 3 due to time constraints, serial dilutions were prepared for next weeks lab, in order to allow bacteria to grow and to look at the hay infusions microbiology. To make a serial dilution, 4 tubes containing 5 mL of sterile broth were collected and labeled 10^-2, 10^-4, 10^-6, and 10^-8. 50 mL of the mixed hay infusion was then added to the first dilution (10^-2). The tube was then swirled, and 50 mL was added to the next dilution, and so on until each test tube contained 50 mL of the previous dilution, becoming more diluted each time. For this lab, two kinds of agar plates will be used to grow the bacteria. The first contains a regular nutrient agar, while the second contains tetracycline, an antibiotic. Four plates of each were obtained, labeled based on the dilutions (10^-3, 10^-5, 10^-7, 10^-9), and treated with it's respective dilution (10^-8 dilution was plated on 10^-9, and so on). It's important to start with the most diluted solution on the nutrient agar only plate to prevent contamination of both more concentrated bacteria as well as the tetracycline. The agar plates were then left to incubate until the next class.

Results


Notes on the Hay Infusion: Foul smell or mold and dirt. A thick layer of dirt was present at the bottom and a thin layer of potential mold (small dots) was seen just below the surface. The water was mirky with a light brown/green tint and residue could be seen on the wall of the jar. From the top layer, Euglena was observed, and had a green color indicating photosynthesis. The euglena was motile with a size of approximately 35-55 um. Chlamydomas was also observed with a rounder shape and 2 flagellum. These are considerably smaller than the euglena, measuring only about 7 um and lacked the green color of euglena. Finally, we observed Didinium, which were relatively large at 20 um. These were seen across the samples, but were not motile and did not appear to be photosynthesizing, indicating it could be a protist.


Note the smell and describe its appearance. Is there any apparent life on top of the liquid like molds or green shoots? Draw samples from two different niches. Include some plant matter in your observations. Why might the organisms differ close to versus away from the plant matter? Determine what protists and algae are present using your dichotomous key. Draw pictures of the organisms you observe. You should describe and identify at least 3 different organisms from each of two niches of your culture (6 total). Are the organisms motile or non-motile, protozoa, algae, or others? Are they photosynthesizing or not? Identify these with the key. Measure and record their size with the ocular micrometer. Choose one of the organisms and describe how this species meets all the needs of life as described on page 2 in the Freeman text. If the Hay Infusion Culture “grew” for another two months what changes would you predict to occur? What selective pressures would affect the community of your samples?





Examining Biological Life at AU (06/30/2015)

Introduction


Life can be seen all around us, from large organisms such as humans to the smallest organisms such as protists and other unicellular eukaryotes. As these different species interact with each other as well as the surrounding environment, ecosystems form which allow for evolution and natural selection to occur . Over time, natural selection creates biodiversity through the extinction of some species and the formation of others. In this lab, we will be looking at biodiversity through studying a small transect of land and it's containing ecosystem (Bentley, Knight, Walters-Conte, Zeller, 2015). Through this process, we will hopefully gain a better understanding of ecology as well as biodiversity.


Methods


This lab contained two projects, Initially, the class was divided into groups of 4 and told to find and describe a 20x20 meter transect of land on the Au campus. Transects were to be chosen based on the likelihood of biodiversity and high biotic and abiotic life. For this reason, we chose to conduct this research within a transect of land located between Hurst Hall and the East Quad Building, and next to Nebraska Ave. Next, we noted the nature of the transect and took a small sample containing soil and some biotic life (grass) for the second part of today's lab, the hay infusion. To make the hay infusion, we combined approximately 10 grams of our sample with 500 mL water and .1 g of dried milk. The jar containing the aforementioned ingredients was then shaken and labeled, then placed in the back of the room with the lid off.


Results


The area is relatively flat and is mostly comprised of different species of grass. In terms of biotic life, the transect also contains several trees, flowers, as well as life such as birds, squirrels, fungi growing adjacent to the trees, worms, and flies. In addition, our transect also contains a lot of abiotic life, through rocks, soil, buildings, the sprinklers for the grass, etc.

Discussion


This is the first part of an ongoing exploration of our transect. Most of this lab was devoted to finding and describing the transect as well as creating the hay infusion. In the coming weeks, the transect will be more closely studied, looking at the ecosystem from small organisms (protists) to larger invertebrates and vertebrates. In the next lab, we will be studying the organisms present in the hay infusion.