User:Patrick Hampson/Notebook/Biology 210 at AU

From OpenWetWare
Jump to navigationJump to search

January 20, 2015 Created my notebook -P.H.

January 20, 2015 Biological Life Found in Sections of American University Performed: January 14, 2017.

Purpose: Life on Earth is magnificently diverse. Today's life forms are specialized and equipped for where they live, as they inherit the most fit characteristics from organism many generations before their own. Due to their adaptations and their ancestor's migrations, not many life forms found on Earth today exist in numerous environments throughout the world. Surely, there are many classifications of animals that live in various environments throughout the world, such as bats, mice, and foxes, to name a few, but there are even variations in characteristics between similar species due to inherited adaptations. In this lab, small, sample sized ecosystems, also referred to as transects, will be studied (Bentley, Walters-Conte, Zeller, 2015). Transects contain both biotic (living) and abiotic (non-living) factors that interact with one other and create a web of complex relationships that are essential to balance life within the ecosystem.

Materials and Methods: Each group was assigned a different transect to thoroughly survey and investigate. The assigned transects were 20 x 20 meters, except for one transect, the manicured grassland (Quad), which was a triangle. Groups went out and examined their transects thoroughly. Once every square meter of the transect was examined, the groups created their own topographical, or aerial maps which depicted their transect in full detail, down to the placement of seemingly small abiotic factors such as patches of snow. A representative dirt and vegetation sample was then retrieved from a random location in the transect and placed in a 50 mL tube, until the tube was filled. Anywhere between 10 and 12 grams of the dirt and vegetation sample were placed into a plastic jar which also contained 500 mLs of purified water. 0.1 grams of dried milk was added to the mixture, and also mixed in very gently, to not kill the living organisms from the sample. The lid of the jar was left off, to minimize the impact on the pint-sized ecosystem. The jars were left alone for one week, until the next lab time.


Group 5 transect: The transect assigned to the group was a triangular (right) portion of the quad which was located in front of Hurst hall, right next to a walkway and a sign for "Friedheim Quadrangle". The transect was comprised mainly of a level, grassy plain, with a portion of it including an area of bark mulch with potted and wild plants. The transect contained seasonal abiotic factors, such as decaying dead leaves, proving fall was some time ago, as well as snow, illustrating the presence of winter. Abiotic factors included: snow, dirt, mulch, and dead leaves. Biotic factors included: grass, spider grass, clovers, wild berries, dandelions, bushes equipped with thorns (rose bush?), and a population of another type of bush that looked rather frail. The mulch area was a constant on the western side of the transect. Leaves loosely blanketed the mulch area, and even spilled onto the closest edges of the grass. Thorn bushes ranged from the bottom south west portion of the triangle, to just above the western north-south midpoint of the triangle. Berries and spider grass were located right next to each other, in between two thorn bushes, near the north-south midpoint of the transect. The clovers and dandelions were located more towards the northern most bush, which did not have any thorns and looked rather frail. Dirt was a constant base throughout the transect, being located underneath the mulch, as well as a base for the grass. Grass accounted for most of the area of the transect, ranging from most of the east to west distance, as well as most of the north to south distance. snow was scattered though out the transect.


Transect_from_lab_1.JPG Picture of the transect can be found somewhere on OWW, as I uploaded it, but have no idea where it is.


January 27, 2015

Purpose:


Materials:


The Hay Infusion Culture: The culture had a peculiar smell to it, nothing like I have smelt before, the only way to describe it was rancid. There was mold at the top of the culture, which resembled burned hot chocolate, as it appeared rugged.

The samples: Top (Near the plant matter, directly under the mold covered surface): We observed what appeared to be: Colpidium sp. (60 micrometers), (Protozoa) appeared to be relatively translucent with a greenish hue, motile in the sense that it appeared to glide. Paramecium aurelia (120 micrometers), (Protozoa) appeared to be relatively translucent with a greenish hue, motile in the sense that it appeared to glide. Seemed to simply be larger and proportionally thinner than Colpidium sp.. and an unknown (not identifiable from the dichotomous key) organism, (Protozoa) which had cilia on both ends, and some on one side (100 micrometers). This organism was also relatively translucent, but had a slightly dirty hue to it. These organisms could be near the top of the culture for multiple and various reasons, such as they were eating the decomposing leaves, are comfortable in the structure that the mold brings to their environment, or even that they wish to get more sunlight than the organisms living at the bottom of the culture. Neither of the identified organisms undergo photosynthesis, but the third very well could have. Paramecium do tend to feed of of photosynthesizing algae, so it would not be preposterous for them to be feeding off the leaves.

Bottom (Right from the dirt-settled bottom): we observed what appeared to be Paramecium multimicronucleatum (210 micrometers), (protozoa) this organism was translucent and had dirty brown hue to it. It motile motion makes it appear to glide. Paramecium bursaria (80 micrometers), (protozoa) this organism was almost seemingly clear (very translucent), with hints of green throughout. Its motile motion also made it appear to glide. and an unknown (not identifiable from the dichotomous key) organism that was circular and vibrating (10 micrometers), this organism was also translucent and had hints of green throughout. This organisms mode of motility simply seemed to be vibrating. No visible cilia of flagella. These organisms could have been living in the bottom of the sample for various reasons, such as they prefer not to experience too much sunlight, or just do not need to undergo photosynthesis in any sense, or they could have liked the structure and comfort that the dirt-settled bottom brought to them.

Paramecium Aurelia: This organism fulfills the five needs of life while living at the top of the culture. It can gain energy from the photosynthesis of plants in the culture, as well as gain nutrients from the leaves as they decompose. It is currently living in water, so there is no shortage of water resources in the culture. It can get its oxygen from the photosynthesis of plants in the culture, also from the open top of the culture. It appears to have plenty of space to move around, even if there are collisions between organisms frequently. The temperature of the culture is dependent on the temperature of the lab, of course the lab is a comfortable temperature, so it should not negatively affect the organisms.

If the Hay Infusion Culture continued on for another two months, I would expect one of two things. Either all of the organisms in the culture would die, and this is because there is no plant life to create oxygen for the organisms to breathe. Although the lid of the culture is wide open, the mold will have completely taken over the surface, preventing any way for the protozoa to get any oxygen from the surface. OR there will be an abundance of one particular organism that has adapted to its environment and found a way to outlast/ out-compete all the other organisms in the culture. This organism would be the most fit for the environment, and therefore do the best in competing for survival. Factors that could change the community in the sample include, but are not limited to: the mold completely taking over the surface, creating an impenetrable barrier for the protozoa, plant life coming into existence, the elimination of oxygen in the water, lack of resources/essentials of life, and of course time.