User:Lawrence Kazak: Difference between revisions

From OpenWetWare
Jump to navigationJump to search
Line 47: Line 47:
|style="background:#fff"|
|style="background:#fff"|


'''1.''' Kir S, White JP, Kleiner S,''' Kazak L''', Cohen P, Baracos VE, and Spiegelman BM.  ''Tumor-derived PTH-related protein triggers adipose tissue browning and cancer cachexia''. '''[[Nature]]'''. 2014. In Press
'''1.''' Kir S, White JP, Kleiner S,''' Kazak L''', Cohen P, Baracos VE, and Spiegelman BM.  ''Tumor-derived PTH-related protein triggers adipose tissue browning and cancer cachexia''. '''[[Nature]]'''. 2014. [http://www.nature.com/nature/journal/vaop/ncurrent/full/nature13528.html]


'''2.''' Kong X, Banks A, Liu T,''' Kazak L''', Rao RR, Cohen P, Wang X, Yu S, Lo JC, Tseng YH, Cypess AM, Xue R, Kleiner S, Kang S, Spiegelman BM, and Rosen ED.  ''IRF4 Is a Key Thermogenic Transcriptional Partner of PGC-1α''. '''[[Cell]]'''. Jul 3;158(1):69-83. 2014. [http://www.ncbi.nlm.nih.gov/pubmed/24995979]
'''2.''' Kong X, Banks A, Liu T,''' Kazak L''', Rao RR, Cohen P, Wang X, Yu S, Lo JC, Tseng YH, Cypess AM, Xue R, Kleiner S, Kang S, Spiegelman BM, and Rosen ED.  ''IRF4 Is a Key Thermogenic Transcriptional Partner of PGC-1α''. '''[[Cell]]'''. Jul 3;158(1):69-83. 2014. [http://www.ncbi.nlm.nih.gov/pubmed/24995979]

Revision as of 09:26, 19 July 2014


Lawrence Kazak, PhD
Post-doctoral fellow
Department of Cancer Biology and Division of Metabolism and Chronic Disease, Dana-Farber Cancer Institute
Department of Cell Biology, Harvard Medical School
Laboratory of Dr. Bruce M. Spiegelman
Boston, MA, USA, 02215
email: Lawrence_Kazak@dfci.harvard.edu

Education

  • 2013-present, Post-doctorate, Cell Biology, Dana Farber Cancer Institute, Harvard Medical School, Harvard University, Boston, MA Dr. Bruce M. Spiegelman
  • 2008-2013, PhD, Biological Science, University of Cambridge, Cambridge, UK Dr. Ian J. Holt
  • 2005-2008, MSc, Kinesiology and Health Science, York University, Toronto, Canada. Supervisor: David A. Hood
  • 2001-2005, BA, York University, Toronto, Canada

Funding

current
2014-2017: Canadian Institutes of Health Research postdoctoral fellowship [1].
past
2008-2011: Cambridge Commonwealth Trust
2008-2011: Overseas Research Trust

Research

current
I am currently a Post-doctoral Fellow at the Dana-Farber Cancer Institute and Department of Cell Biology, Harvard Medical School. I work in the lab of Dr. Bruce M. Spiegelman. I am investigating the regulation of adaptive thermogenesis by adipose tissue, using a combination of approaches including cell biology, biochemistry, genetics, quantitative proteomics, and computational biology. My scientific aims are centered around the identification of mechanisms that regulate adipose tissue energy expenditure. My future goal is to lead my own group in the area of energy metabolism, adipocyte biology, and mitochondrial bioenergetics.
past
I originally trained in the area of exercise and skeletal muscle physiology during my undergraduate and MSc degrees. My PhD was carried out at the University of Cambridge in the MRC Mitochondrial Biology Unit, under the supervision of Dr. Ian J. Holt (Mitochondrial Diseases). Over the course of my PhD, I used the tools of molecular biology, genetics, and biochemistry to understand the mechanisms that regulate mammalian mitochondrial DNA replication and the targeting of proteins to mitochondria via alternative translation initiation.

Research interests

  1. Energy Metabolism
  2. Mitochondrial Biology
  3. Adipogenesis
  4. Genetics
  5. Exercise Physiology

Ad hoc reveiwer

  1. Nucleic Acids Research

Selected Publications

1. Kir S, White JP, Kleiner S, Kazak L, Cohen P, Baracos VE, and Spiegelman BM. Tumor-derived PTH-related protein triggers adipose tissue browning and cancer cachexia. Nature. 2014. [2]

2. Kong X, Banks A, Liu T, Kazak L, Rao RR, Cohen P, Wang X, Yu S, Lo JC, Tseng YH, Cypess AM, Xue R, Kleiner S, Kang S, Spiegelman BM, and Rosen ED. IRF4 Is a Key Thermogenic Transcriptional Partner of PGC-1α. Cell. Jul 3;158(1):69-83. 2014. [3]

3. Ye L, Wu J, Cohen P,Kazak L, Khandekar MJ, Jedrychowski MP, Zeng X, Gygi SP, and Spiegelman BM. Fat cells directly sense temperature to activate thermogenesis. PNAS. Jul 23;110(30):12480-5. 2013. [4]

4. Kazak L, Reyes A, He J, Brea-Calvo G, Wood SR, Holen TT, and Holt IJ. A cryptic targeting signal creates a mitochondrial FEN1 isoform with tailed R-loop binding properties. Plos One. 8(5):e62340. 2013. [5]

5. Reyes A, Kazak L, Wood SR, Yasukawa T, Jacbos HT, and Holt IJ. Mitochondrial DNA Replication Proceeds via a Bootlace Mechanism Involving the Incorporation of Processed Transcripts. Nucleic Acids Res. Jun;41(11):5837-50. 2013. [6]

6. Kazak L, Reyes A, Duncan A, Rorbach J, Wood SR, Brea-Calvo G, Gammage P, Robinson AJ, Minczuk M, and Holt IJ. Alternative translation initiation augments the human mitochondrial proteome. Nucleic Acids Res. 2013. Feb 1;41(4):2354-69. [7]

7. Kazak L, Reyes A, Holt IJ. Minimizing the damage: repair pathways keep mitochondrial DNA intact. Nat Rev Mol Cell Biol. 2012. Oct;13(10):659-71. [8]

8. He J, Cooper HM, Reyes A, Di Re M, Kazak L, Wood SR, Mao CC, Fearnley IM, Walker JE, Holt IJ. Human C4orf14 interacts with the mitochondrial nucleoid and is involved in the biogenesis of the small mitochondrial ribosomal subunit. Nucleic Acids Res. 2012. Jul;40(13):6097-108. [9]

9. Reyes A, He J, Mao CC, Bailey LJ, Di Re M, Sembongi H, Kazak L, Dzionek K, Holmes JB, Cluett TJ, Harbour ME, Fearnley IM, Crouch RJ, Conti MA, Adelstein RS, Walker JE, Holt IJ. Actin and myosin contribute to mammalian mitochondrial DNA maintenance. Nucleic Acids Res. 2011. Jul;39(12):5098-108. [10]