User:Julian C. Leos/backgrounduanl

From OpenWetWare
Jump to navigationJump to search

<html lang="en-US"> <head>

 <meta http-equiv="Content-Type" content="text/html;charset=utf-8">
 <title>Fixed Top Navigation Toolbar</title>
 <meta name="author" content="Jake Rocheleau">
 <link rel="shortcut icon" href="http://designshack.net/favicon.ico">
 <link rel="icon" href="http://designshack.net/favicon.ico">
 <link rel="stylesheet" type="text/css" media="all" href="styles.css">
 <link rel="stylesheet" type="text/css" media="all" href="http://fonts.googleapis.com/css?family=Capriola">
 <script type="text/javascript" src="https://ajax.googleapis.com/ajax/libs/jquery/1.9.1/jquery.min.js"></script>

<script src="http://ajax.googleapis.com/ajax/libs/jquery/1.11.1/jquery.min.js"></script> <!-- Latest compiled css and JavaScript --> <script src="http://maxcdn.bootstrapcdn.com/bootstrap/3.2.0/js/bootstrap.min.js"></script> <!--j--query--> <!--Nav Bar Theme--> <link href="http://maxcdn.bootstrapcdn.com/bootswatch/3.2.0/yeti/bootstrap.min.css" rel="stylesheet">

<style> html, body, div, span, applet, object, iframe, h1, h2, h3, h4, h5, h6, p, blockquote, pre, a, abbr, acronym, address, big, cite, code, del, dfn, em, img, ins, kbd, q, s, samp, small, strike, strong, sub, sup, tt, var, b, u, i, center, dl, dt, dd, ol, ul, li, fieldset, form, label, legend, table, caption, tbody, tfoot, thead, tr, th, td, article, aside, canvas, details, embed, figure, figcaption, footer, header, hgroup, menu, nav, output, ruby, section, summary, time, mark, audio, video {

 margin: 0;
 padding: 0;
 border: 0;
 font-size: 100%;
 font: inherit;
 vertical-align: baseline;
 outline: none;
 -webkit-text-size-adjust: 100%;
 -webkit-box-sizing: border-box;
 -moz-box-sizing: border-box;
 box-sizing: border-box;

} html { height: 101%; } body { font-family: Tahoma, Verdana, Arial, sans-serif; font-size: 62.5%; line-height: 1; padding-bottom: 65px; background: #444 url('images/bg.png'); }

article, aside, details, figcaption, figure, footer, header, hgroup, menu, nav, section { display: block; } ol, ul { list-style: none; }

blockquote, q { quotes: none; } blockquote:before, blockquote:after, q:before, q:after { content: ''; content: none; } strong { font-weight: bold; }

table { border-collapse: collapse; border-spacing: 0; } img { border: 0; max-width: 100%; }

h1 {

 font-family: 'Capriola', Tahoma, Arial, sans-serif;
 font-weight: normal;
 font-size: 2.95em;
 line-height: 1.2em;
 letter-spacing: -.0.03em;
 color: #383838;
 margin-bottom: 16px;

}

p { font-size: 1.2em; line-height: 1.45em; margin-bottom: 15px; color: #434343; text-align: justify; }

a { color: #5b77a4; text-decoration: underline; } a:hover { color: #7d94bb; }


  1. w {
 display: block;
 width: 710px;
 padding: 14px 15px;
 margin: 0 auto;
 margin-top: 45px;

}

  1. content {
 display: block;
 background: #fff;
 padding: 80px 50px;

}

  1. logo { display: block; border: 1px solid #232323; border-bottom-width: 0; }
  2. logobg {
 display: block;
 width: 100%;
 height: 130px;
 background: url('images/logo.png') top left no-repeat;
 text-indent: 100%;
 white-space: nowrap;
 overflow: hidden;

}

/* top navigation */

  1. navigation {
 display: block;
 height: 35px;
 background-color: #131313;
 background-image: -webkit-gradient(linear, left top, left bottom, from(#202020), to(#131313));
 background-image: -webkit-linear-gradient(top, #202020, #131313);
 background-image: -moz-linear-gradient(top, #202020, #131313);
 background-image: -ms-linear-gradient(top, #202020, #131313);
 background-image: -o-linear-gradient(top, #202020, #131313);
 background-image: linear-gradient(top, #202020, #131313);

}

  1. navigation ul { list-style: none; padding: 0px 7px; }
  1. navigation ul li { display: inline; float: left; }
  2. navigation ul li a {
 display: block; 
 padding: 0 8px; 
 color: #fff;
 font-size: 1.1em;
 text-decoration: none;
 line-height: 35px; 
 font-weight: bold; 
 margin-right: 6px;
 text-shadow: 1px 1px 1px #000;
 -webkit-transition: all 0.2s linear;
 -moz-transition: all 0.2s linear;
 transition: all 0.2s linear;

}

  1. navigation ul li a:hover { color: #a8d6e7; }

/* hidden fixed navigation */

  1. fixedbar {
 display: none;
 position: fixed;
 top: 0;
 width: 100%;
 height: 80px;
 background: rgba(0,0,0,0.75);

}

  1. fixednav {
 display: block;
 width: 710px;
 margin: 0 auto;
 padding: 0px 25px;

}

  1. fixednav li { }
  1. fixednav li a {
 display: block;
 float: left;
 font-size: 1.75em;
 font-weight: bold;
 color: #96aed8;
 line-height: 80px;
 text-decoration: none;
 padding: 0px 8px;
 margin-right: 6px; 
 -webkit-transition: all 0.2s linear;
 -moz-transition: all 0.2s linear;
 transition: all 0.2s linear; 

}

  1. fixednav li a:hover {
 color: #fff;
 background: rgba(0,0,0,0.3);

}


.navbar{ top:8.5px; position:fixed; width:96.8%; z-index: 9999 !important; }

div img {

 position: absolute;
 top:  0px; 
 left: 0px;

}

div imglogo {

 position: absolute;
 top:  20px; 
 left: 20px;

}

div caja1 {

 position: absolute;
 top:  100px; 
 left: 500px;

}


footer {
           position: relative;
           /* Altura total del footer en px con valor negativo */
           margin-top: -50px;
           /* Altura del footer en px. Se han restado los 5px del margen
              superior mas los 5px del margen inferior
           */
           height: 40px; 
           padding:5px 0px;
           clear: both;
           background: #286af0;
           text-align: center;
           color: #fff;

z-index: 9999 !important;

       }

</style> </head>

<body>

<!--Nav-->

<div class="navbar navbar-default">

 <div class="navbar-header">
   <button type="button" class="navbar-toggle" data-toggle="collapse" data-target=".navbar-responsive-collapse">
     <span class="icon-bar"></span>
     <span class="icon-bar"></span>
     <span class="icon-bar"></span>
   </button>
   <a class="navbar-brand" href="http://openwetware.org/wiki/Biomod/2014/UANL">UANL</a>
 </div>
 <div class="navbar-collapse collapse navbar-responsive-collapse">
   <ul class="nav navbar-nav">

<li><a href="http://openwetware.org/wiki/User:Julian_C._Leos/backgrounduanl">Background</a></li> <li><a href="">Project</a></li> <li><a href="http://openwetware.org/wiki/User:Julian_C._Leos/applicationsuanl">Medical APP</a></li> <li><a href="http://openwetware.org/wiki/User:Julian_C._Leos/industrialuanl">Industrial APP</a></li> <li><a href="http://openwetware.org/wiki/User:Julian_C._Leos/modelinguanl">Diffusion model</a></li> <li><a href="http://openwetware.org/wiki/User:Julian_C._Leos/kineticmodelinguanl">Kinetic model</a></li> <li><a href="">Team</a></li>


   </ul>
 </div>

</div> <!--Nav Bar Done-->>

   <div>
 <img src="http://openwetware.org/images/c/c9/Logo.png" />

</div>

   <div id="imglogo">
 <img src="http://openwetware.org/images/5/55/St-ae-may-002.png" />

</div>

   <div id="content">
     <h1>Background</h1>
     <p>A nanoreactor is a nanozised container for chemical reactions,  in a range 1-100 nm, biological systems have always been an inspiration because of their complexity and diversity.  Cell processes take place within constrained spaces and small volumes, and many are not yet fully understood. Advances in nanoscale fabrication have allowed us to mimic some of these spaces and features with other structures. The volumes that are present at this level allow molecules to collide more often, as opposed to an “open space”; simulations based on Brownian diffusion have shown that collision frequency between molecules strongly depend on vesicle size.

Now, one of the main differences and reasons to use nanoreactors as opposed to “traditional” benchtop or micro reactors is that the reaction space at a nanoscale level strongly influences both movement and interactions of the regents. This may sound new, but nature uses this concept in many structures. Organelles support complex metabolic pathways and influence them due to their geometry and composition. The kinetics and mechanisms of chemical reactions in small-space restricted geometries has been studied in micelles and vesicles, polymer and zeolite structures and cells. The fluctuations of reactive species are larger, and may speed up or slow down reactions. Also, given the ratio between the container’s walls and the overall volume, the properties of the structure also have to be taken into account. <br></br> As the systems become smaller and smaller, the differences begin to grow larger. Enzyme kinetics are no exception, and are also modified, changing from the Michalis-Menten equations to a single-molecule perspective considering probabilities in each step of the reactions. As there is a (relative) small number of molecules within the nanoreactor, or a fixed number, depending on the type of container, the yield may be different than expected. A stochastic approach has been applied and used to model a system’s reaction kinetics. In general, inorganic structures were of greater interest because of their resilience to common industrial applications, mainly high temperature and pressure. However, self-assembled biological structures are of interest due to their possible application in vivo. One of the most widely studied containers is the liposome: a self-assembling structure formed by a lipid bilayer.</p>


     <h1>Liposomes</h1>
     <p>A liposome is a spherical soft-matter particle, composed by one or multiple lipid bilayers, which encapsulate an aqueous medium. This is possible because of their interactions with water: the “head” group, which is hydrophilic, and the “tail” group, which is hydrophobic. One example of a lipid bilayer is the cell membrane.  Lipids as analogs of these membranes are generally assembled by spontaneous self-organization from pure lipids or lipid mixtures.  The most commonly used lipids are phospholipids, particularly phosphatidylcholine for its neutral charge. Other compounds can be used in order to change the liposome’s electrical charge. 

<br></br> These structures were first described by Dr. Alec D. Bangham in 1961, and have since been widely studied. A liposome has the ability to encapsulate a solution within its membrane, preventing contact with the outer medium. Diffusion is dependant on a variety of factors, including, but not limited to, temperature, pH, ratio of saturated/insaturated phospholipids, size of the molecule, etc. Liposomes can be classified into several types according to their features, namely size and number of lamellae (bilayers). <br></br> Unimellar vesicles are of special interest to researchers due to their well-characterized membrane properties and facile preparation in a laboratory. Multimellar vesicles show a greater range of physical properties and general behavior when compared to unimellar vesicles, and are more used with industrial applications like drug delivery. Liposomes are not considered to be in a thermodynamic equilibrium because curvature energy is being confined in the vesicles as they are produced. The curvature free energy, also known as bending energy, is defined by the rigidity and curvature of the membrane, and is directly responsible for the large variety of sizes and shapes that liposomes can take. </p> <br></br> <br></br> <br></br> <br></br> <br></br> <br></br> <br></br> <br></br> <br></br> <IMG STYLE="position:absolute; TOP:1200px; LEFT:170px;" SRC="http://openwetware.org/images/e/e4/Lipo1julian.png"> <br></br> <br></br> <br></br> <br></br> <br></br> <br></br> <br></br> <br></br> <br></br> <br></br> <br></br> <br></br> <IMG STYLE="position:absolute; TOP:1550px; LEFT:170px;" SRC="http://openwetware.org/images/f/fc/LipoSize.png">

<h1>Synthesis</h1>
     <p>Liposomes are frequently synthesized by mixing and dissolving phopsholipids in an organic solvent like chloroform or a chloroform-methanol mixture. Removing the solvent, through evaporation, reveals a clear lipid film/powder, which is then hydrated, leading to the formation of large multimellar vesicles (LMV’s). Smaller liposomes are produced by disrupting these structures through sonication, yielding SUV’s. However, these are not very stable, and often form larger vesicles. If one seeks to form unimellar vesicles, the most common method used is extrusion, within the range of ~100 nm pore size. This yields liposomes of 120 nm – 140 nm in diameter, and are more reproducible that those achieved through sonication. Advantages include the absence of organic solvents in the mix, which could denature compounds, high encapsulation efficiencies and a very uniform size distribution. However, it should be noted that the liposomes formed by extrusion form an elongated elliptical shape rather than a perfect sphere.</p>

<hr size="10px" width=100% align="center"/>

<h2>References:</h2> <p> 1. http://en.wikibooks.org/wiki/Structural_Biochemistry/Liposomes <br></br> 2. http://books.google.com.mx/books?id=uLoA236Kwg0C <br></br> 3. http://www.structuralbiology.be/files/theses/2010%20Vocht.pdf <br></br> 4. http://lib.gen.in/3299714a9db912d26900bc8cc52b6519/jesorka2008.pdf <br></br></p>

      </div>

</div>

 </div>

<script type="text/javascript"> $(document).ready(function(){

 $('#navigation a, #fixedbar a').on('click', function(e) {
   e.preventDefault();
 });
 
 $(window).on('scroll',function() {
   var scrolltop = $(this).scrollTop();
   if(scrolltop >= 215) {
     $('#fixedbar').fadeIn(250);
   }
   
   else if(scrolltop <= 210) {
     $('#fixedbar').fadeOut(250);
   }
 });

}); </script>

</body> </html>