User:Jliang: Difference between revisions

From OpenWetWare
Jump to navigationJump to search
 
(32 intermediate revisions by 2 users not shown)
Line 1: Line 1:
==Joe Liang==
{{Smolke_Top}}
Graduate Student at [http://openwetware.org/wiki/Smolke Smolke Lab] <br/>
==Joe C. Liang==


Department of Chemical Engineering, MC 210-41<br/>
[[Image:Joe.jpg|right|thumb]]
California Institute of Technology<br/>
Pasadena, CA 91125-4100<br/>
(626)395-2753<br/>


jliang @ caltech . edu
Ph.D. Candidate <br/>
Bioengineering -- [http://openwetware.org/wiki/Smolke Smolke Lab] <br/>
Y2E2 Building, MC 4200 <br/>
473 Via Ortega <br/>
Stanford, CA 94305 <br/>
Phone: (650) 721-5884 <br/>


==Education==
==Education==
Ph.D Student, Chemical Engineering, Caltech, 2006-present <br/>
Ph.D, Candidate, Chemical Engineering, Caltech, 2008-present <br/>
B.S, Chemical Engineering wiht Applied Physical Science Emphasis, University of California at Berkeley, 2006<br/>
M.S, Chemical Engineering, Caltech, 2008 <br/>
B.S, Chemical Engineering, UC Berkeley, 2006<br/>


==Research Interest==
==Research Interest==
RNA aptamers are known to have high molecular discriminating ability. One classic example is that the theophylline aptamers does not respond in the presense of caffeine despite structurally differing in merely one methyl group. This superior sensitivity of aptmaers binding to metabolites is a nice trait to be incorportated in a synthetic biological regulartory network, which usually consists of many structurally similar intermeidates. However, the application of using aptamers in a synthetic pathway has been severely limited by the ability to effectivly generate functional aptamers ''in vivo''. Traditional ''SELEX'' usually takes weeks in selection and characterizaion and requires further screening ''in vivo'' for functional aptamers. In the Smolke lab, we have developed several portable, modular, and tunable ribozyme-based switch platform.  .... more
I am developing enabling technologies that support generation of RNA devices.


==Publication==
==Publications==
<biblio>
#liang1  [http://www.cs.caltech.edu/cbsss/finalreport/yjunction_group.pdf ''Y-Junction Carbon Nanotube Implementation of Intramolecular Electronic NAND Gate'']
<br>Benjamin Gojman, Happy Hsin, Joe Liang, Natalia Nezhdanova, Jasmin Saini
#liang2 ''Evaluation of Two Computational Models Based on Different Effective Core Potentials for Use in Organocesium Chemistry''
<br>Streitwieser, A.; Liang, J. C.-Y.; Jayasree, E. G.; Hasanayn, F. J. Chem. Theory and Comput.; (Article); 2007; 3(1); 127-131


</biblio>
# Liang JC, Smolke CD. 2011. Rational design and tuning of ribozyme-based devices. In: Hartig J, editor. Methods in Molecular Biology. In press.
 
# Win MN,  Liang JC, Smolke CD. 2010. Frameworks for programming RNA devices. In: Mayer G, editor. The Chemical Biology of Nucleic Acids. U.K.: John Wiley & Sons, Ltd. pp. 323-38.
=Honors and Awards=

Latest revision as of 13:52, 29 March 2011

Home        Contact        Internal        Protocols        Lab Members        Publications        Research       


Joe C. Liang

Ph.D. Candidate
Bioengineering -- Smolke Lab
Y2E2 Building, MC 4200
473 Via Ortega
Stanford, CA 94305
Phone: (650) 721-5884

Education

Ph.D, Candidate, Chemical Engineering, Caltech, 2008-present
M.S, Chemical Engineering, Caltech, 2008
B.S, Chemical Engineering, UC Berkeley, 2006

Research Interest

I am developing enabling technologies that support generation of RNA devices.

Publications

  1. Liang JC, Smolke CD. 2011. Rational design and tuning of ribozyme-based devices. In: Hartig J, editor. Methods in Molecular Biology. In press.
  2. Win MN, Liang JC, Smolke CD. 2010. Frameworks for programming RNA devices. In: Mayer G, editor. The Chemical Biology of Nucleic Acids. U.K.: John Wiley & Sons, Ltd. pp. 323-38.