User:Tkadm30/Notebook/Endocannabinoids: Difference between revisions

From OpenWetWare
Jump to navigationJump to search
(30 intermediate revisions by the same user not shown)
Line 5: Line 5:
=== Hypothesis ===
=== Hypothesis ===
# DHA may potentiate synaptic plasticity (and cognition) via [http://www.nature.com/mp/journal/v7/n3/full/4000999a.html retrograde CB1 signaling].
# DHA may potentiate synaptic plasticity (and cognition) via [http://www.nature.com/mp/journal/v7/n3/full/4000999a.html retrograde CB1 signaling].
## DHA activate the [http://www.genome.jp/dbget-bin/www_bget?hsa:2902+hsa:2903+hsa:2904+hsa:2905+hsa:2906 NMDA  receptor] and upregulate the release of glutamate. [http://www.ncbi.nlm.nih.gov/pubmed/19682204 1]
## DHA activate the (presynaptic?) [http://www.genome.jp/dbget-bin/www_bget?hsa:2902+hsa:2903+hsa:2904+hsa:2905+hsa:2906 NMDA  receptor] and upregulate the release of glutamate. <cite>ref1</cite>
## Hippocampal CA3 synapses facilitate synaptic plasticity, thus learning is enhanced. [http://cercor.oxfordjournals.org/content/21/11/2442.full 2]
### DHA-induced synapses (CA3) enhance synaptic plasticity, thus learning is enhanced. <cite>ref2</cite>
### Induction of Long-Term Potentiation/Persistent synaptic plasticity (LTP). ([http://www.genome.jp/kegg-bin/show_pathway?hsa04720+2902 Pathway])
### Induction of Long-Term Potentiation/Persistent synaptic plasticity (LTP). ([http://www.genome.jp/kegg-bin/show_pathway?hsa04720+2902 Pathway])
# Synaptic activation of neurotrophic GABA(B) receptor by endocannabinoids (CB1) promote synaptic function and learning. (Is activity-dependent synaptogenesis dependent on BDNF?) [http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2661034/ 3] [http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3824957/ 4]
## Activation of inhibitory GABAergic synapse (GABA(B) receptor ?) by endocannabinoids (DHA) may promote synaptic function and learning. <cite>GABA-2013</cite>
### TrkB receptor regulate activity-dependent synaptogenesis and BDNF expression <cite>TrkB-2009</cite>


=== Model ===
=== Model ===
Line 15: Line 16:
# The Wet Blanket:  
# The Wet Blanket:  
## Role: Protect the hippocampus and neurons from [http://www.alzforum.org/news/research-news/endocannabinoids-wet-blanket-hippocampus-excitement glutamate excitoxicity].   
## Role: Protect the hippocampus and neurons from [http://www.alzforum.org/news/research-news/endocannabinoids-wet-blanket-hippocampus-excitement glutamate excitoxicity].   
## CB1: A '''synaptogenic''' receptor? (most likely) [http://www.ncbi.nlm.nih.gov/pubmed/21810478 5]
## CB1: A '''synaptogenic''' receptor? (most likely)  
# The Vector:
# The Milestone:
## FAAH/anandamide hydrolysis of DHEA (a endocannabinoid like molecule)
## FAAH hydrolysis of DHEA (a endocannabinoid like molecule)
## Activation of Ca2+ dependent BDNF via the [http://www.kegg.jp/dbget-bin/www_bget?ko:K04360 TrkB] pathway
## [http://www.kegg.jp/dbget-bin/www_bget?ko:K04360 TrkB] (2.7.10.1) potentiate GABAergic synaptic activation: 
### BDNF expression is Ca2+ and CREB dependent


=== Documentation ===
=== Documentation ===
Line 38: Line 40:
* http://www.ncbi.nlm.nih.gov/pubmed/23426383
* http://www.ncbi.nlm.nih.gov/pubmed/23426383
* http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1574086/
* http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1574086/
* http://www.ncbi.nlm.nih.gov/pubmed/17525344
Cannabinoids and hippocampal neurogenesis:  
Cannabinoids and hippocampal neurogenesis:  
* http://www.truthonpot.com/2013/07/13/scientists-discover-another-way-marijuana-helps-the-brain-grow/
* http://www.truthonpot.com/2013/07/13/scientists-discover-another-way-marijuana-helps-the-brain-grow/
Line 52: Line 55:


=== Keywords ===
=== Keywords ===
hippocampus, anandamide, FAAH, DHA, THC, neurogenesis, synaptogenesis, GABA, synaptamide
hippocampus, anandamide, FAAH, DHA, THC, neurogenesis, synaptogenesis, GABA, synaptamide, BDNF, LTP


== References ==
== References ==
Line 58: Line 61:
#ref1 pmid=19682204
#ref1 pmid=19682204
#ref2 pmid=21493717
#ref2 pmid=21493717
#ref3 pmid=19120438
#GABA-2013 pmid=24282395
#ref4 pmid=24282395
#ref4 pmid=21810478
#ref5 pmid=21810478
#ref5 pmid=21414899
#TrkB-2009 pmid=19188247
</biblio>
</biblio>

Revision as of 15:09, 25 October 2014

Introduction

Notes

Hypothesis

  1. DHA may potentiate synaptic plasticity (and cognition) via retrograde CB1 signaling.
    1. DHA activate the (presynaptic?) NMDA receptor and upregulate the release of glutamate. [1]
      1. DHA-induced synapses (CA3) enhance synaptic plasticity, thus learning is enhanced. [2]
      2. Induction of Long-Term Potentiation/Persistent synaptic plasticity (LTP). (Pathway)
    2. Activation of inhibitory GABAergic synapse (GABA(B) receptor ?) by endocannabinoids (DHA) may promote synaptic function and learning. [3]
      1. TrkB receptor regulate activity-dependent synaptogenesis and BDNF expression [4]

Model

  1. The Promoter: omega 3 (fish oil supplement) fatty acids
    1. DHA (docosahexaenoic acid) conjugate (in the hippocampus?) is docosahexaenoyl ethanolamide (DHEA).
  2. The Wet Blanket:
    1. Role: Protect the hippocampus and neurons from glutamate excitoxicity.
    2. CB1: A synaptogenic receptor? (most likely)
  3. The Milestone:
    1. FAAH hydrolysis of DHEA (a endocannabinoid like molecule)
    2. TrkB (2.7.10.1) potentiate GABAergic synaptic activation:
      1. BDNF expression is Ca2+ and CREB dependent

Documentation

Protocol:

Cannabinoids and hippocampal neurogenesis:

DHA:

Anandamide signaling:

FAAH (fatty acid amide hydrolase):

Introduction to fatty amides:

Synaptic Plasticity:

Keywords

hippocampus, anandamide, FAAH, DHA, THC, neurogenesis, synaptogenesis, GABA, synaptamide, BDNF, LTP

References

  1. Cao D, Kevala K, Kim J, Moon HS, Jun SB, Lovinger D, and Kim HY. Docosahexaenoic acid promotes hippocampal neuronal development and synaptic function. J Neurochem. 2009 Oct;111(2):510-21. DOI:10.1111/j.1471-4159.2009.06335.x | PubMed ID:19682204 | HubMed [ref1]
  2. Hagena H and Manahan-Vaughan D. Learning-facilitated synaptic plasticity at CA3 mossy fiber and commissural-associational synapses reveals different roles in information processing. Cereb Cortex. 2011 Nov;21(11):2442-9. DOI:10.1093/cercor/bhq271 | PubMed ID:21493717 | HubMed [ref2]
  3. Gaiarsa JL and Porcher C. Emerging neurotrophic role of GABAB receptors in neuronal circuit development. Front Cell Neurosci. 2013;7:206. DOI:10.3389/fncel.2013.00206 | PubMed ID:24282395 | HubMed [GABA-2013]
  4. Huang ZJ. Activity-dependent development of inhibitory synapses and innervation pattern: role of GABA signalling and beyond. J Physiol. 2009 May 1;587(Pt 9):1881-8. DOI:10.1113/jphysiol.2008.168211 | PubMed ID:19188247 | HubMed [TrkB-2009]
  5. Kim HY, Spector AA, and Xiong ZM. A synaptogenic amide N-docosahexaenoylethanolamide promotes hippocampal development. Prostaglandins Other Lipid Mediat. 2011 Nov;96(1-4):114-20. DOI:10.1016/j.prostaglandins.2011.07.002 | PubMed ID:21810478 | HubMed [ref4]
  6. Chen AI, Nguyen CN, Copenhagen DR, Badurek S, Minichiello L, Ranscht B, and Reichardt LF. TrkB (tropomyosin-related kinase B) controls the assembly and maintenance of GABAergic synapses in the cerebellar cortex. J Neurosci. 2011 Feb 23;31(8):2769-80. DOI:10.1523/JNEUROSCI.4991-10.2011 | PubMed ID:21414899 | HubMed [ref5]

All Medline abstracts: PubMed | HubMed