User:Brian P. Josey/Notebook/2011/02/08
From OpenWetWare
(→Entry title) 
(→FEMM Model Results) 

Line 15:  Line 15:  
</center>  </center>  
  From this model, I then calculated the magnetic field as a function of the current running through the magnetic wires. From this, I then calculated the force acting on a magnetic dipole placed in the center of the magnet. This time, I am going to do something a little different; I created two different fields over which I took data. The first is a line running along the central axis of the magnet that is 10 mm long. This line is centered at the center of electromagnet, giving 5 mm to either side of the center. The  +  From this model, I then calculated the magnetic field as a function of the current running through the magnetic wires. From this, I then calculated the force acting on a magnetic dipole placed in the center of the magnet. This time, I am going to do something a little different; I created two different fields over which I took data. The first is a line running along the central axis of the magnet that is 10 mm long. This line is centered at the center of electromagnet, giving 5 mm to either side of the center. The derivative from this is recorded as '''10 mm Derivative (T/mm)''' in the table below. Then I cut this line down again to focus on only the central 4 mm. This data is written down as '''4 mm Derivative (T/mm)''' in the table below. Here is the data: 
  +  
  +  
<center>  <center>  
{{ShowGoogleExcelid=0AjJAt7upwcA4dFBKNmhxNVJFUU5tR0M5NTVHazNnbkEwidth=400height=325}}  {{ShowGoogleExcelid=0AjJAt7upwcA4dFBKNmhxNVJFUU5tR0M5NTVHazNnbkEwidth=400height=325}}  
</center>  </center>  
+  
+  I chose to focus on the derivative and not the force, because the derivative is proportional to the force, and I could use the derivative to calculate the force for many different magnetic particles, not just limited to ferritin. Taking the above data, I then want to graph it directly as a function of the current running through the wires. For the 10 mm section the graph of the derivative looks like this:  
+  
+  For the 4 mm section, the graph of the derivative looks like this:  
+  
<! ##### DO NOT edit below this line unless you know what you are doing. ##### >  <! ##### DO NOT edit below this line unless you know what you are doing. ##### > 
Revision as of 13:19, 8 February 2011
Project name  Main project page Previous entry Next entry  
FEMM Model Results[User:Brian P. Josey/Notebook/2011/02/01 Last Tuesday], I attempted to make a model of my newest electromagnet in FEMM, however it failed to work. At the time, I thought that it could be an issue with my computer, until I tried it again. On Thursday, I recreated the model on the lab computer, and it too failed to work properly. After playing with the precision and mesh size, I was able to create a working model. Here is a representative picture of it, taken directly from FEMM: 2.5 Amps solution This image is the solution created by FEMM of my electromagnet with 2.5 Amps running through the magnetic wire. The colors represent the magnetic field density B in Tesla. The magnet is represented so that the 325 turn portion of the magnet is the upper large box, while the 25 turn portion is the lower flat box. Clearly the field strength is greatest near the 325 turn portion. The data collected for today was taken from the boxes on the center left portion of the image. From this model, I then calculated the magnetic field as a function of the current running through the magnetic wires. From this, I then calculated the force acting on a magnetic dipole placed in the center of the magnet. This time, I am going to do something a little different; I created two different fields over which I took data. The first is a line running along the central axis of the magnet that is 10 mm long. This line is centered at the center of electromagnet, giving 5 mm to either side of the center. The derivative from this is recorded as 10 mm Derivative (T/mm) in the table below. Then I cut this line down again to focus on only the central 4 mm. This data is written down as 4 mm Derivative (T/mm) in the table below. Here is the data:
I chose to focus on the derivative and not the force, because the derivative is proportional to the force, and I could use the derivative to calculate the force for many different magnetic particles, not just limited to ferritin. Taking the above data, I then want to graph it directly as a function of the current running through the wires. For the 10 mm section the graph of the derivative looks like this: For the 4 mm section, the graph of the derivative looks like this:
