User:Brian P. Josey/Notebook/2010/06/07: Difference between revisions

From OpenWetWare
Jump to navigationJump to search
Line 7: Line 7:
<!-- ##### DO NOT edit above this line unless you know what you are doing. ##### -->
<!-- ##### DO NOT edit above this line unless you know what you are doing. ##### -->
==Continuing from Friday==
==Continuing from Friday==
I am going through and running my calculations from [User:Brian P. Josey/Notebook/2010/06/04 Friday]. So far, it appears that magnetizing a needle and placing it into a solution of ferritin is not as promising of an idea as I had hoped. The main issue is that the field is much weaker than when using the large yoke, and the effective range from the needle is very short. This might be advantageous, in that I could directly control a very small area, or not.
I am going through and running my calculations from [[User:Brian P. Josey/Notebook/2010/06/04|Friday]]. So far, it appears that magnetizing a needle and placing it into a solution of ferritin is not as promising of an idea as I had hoped. The main issue is that the field is much weaker than when using the large yoke, and the effective range from the needle is very short. This might be advantageous, in that I could directly control a very small area, or not.


I choose a sewing needle over a syringe to capitalize on the solid volume, and thus greater magnetic moment, of the solid needle. I also skipped over a wire to take advantage over the sharp tip of the needle. Creating my model, I simplified it, running it twice, once with a 52 MGOe neodymium magnet, and another time with a 32 MGOe magnet. The 52 MGOe serves as the upper limit of what I can expect, and the 32 serves as a better approximation of a magnetized needle.
I choose a sewing needle over a syringe to capitalize on the solid volume, and thus greater magnetic moment, of the solid needle. I also skipped over a wire to take advantage over the sharp tip of the needle. Creating my model, I simplified it, running it twice, once with a 52 MGOe neodymium magnet, and another time with a 32 MGOe magnet. The 52 MGOe serves as the upper limit of what I can expect, and the 32 serves as a better approximation of a magnetized needle.

Revision as of 08:48, 7 June 2010

Project name <html><img src="/images/9/94/Report.png" border="0" /></html> Main project page
<html><img src="/images/c/c3/Resultset_previous.png" border="0" /></html>Previous entry<html>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</html>Next entry<html><img src="/images/5/5c/Resultset_next.png" border="0" /></html>

Continuing from Friday

I am going through and running my calculations from Friday. So far, it appears that magnetizing a needle and placing it into a solution of ferritin is not as promising of an idea as I had hoped. The main issue is that the field is much weaker than when using the large yoke, and the effective range from the needle is very short. This might be advantageous, in that I could directly control a very small area, or not.

I choose a sewing needle over a syringe to capitalize on the solid volume, and thus greater magnetic moment, of the solid needle. I also skipped over a wire to take advantage over the sharp tip of the needle. Creating my model, I simplified it, running it twice, once with a 52 MGOe neodymium magnet, and another time with a 32 MGOe magnet. The 52 MGOe serves as the upper limit of what I can expect, and the 32 serves as a better approximation of a magnetized needle.