User:Azadeh Khamooshi: Difference between revisions

From OpenWetWare
Jump to navigationJump to search
No edit summary
 
Line 19: Line 19:
* Year, BS, Institute
* Year, BS, Institute


==Research interests==
There are two types of synthetic biologists. The first group uses unnatural molecules to mimic natural molecules with the goal of creating artificial life. The second group uses natural molecules and assembles them into a system that acts unnaturally. In general, the goal is to solve problems that are not easily understood through analysis and observation alone and it is only achieved by the manifestation of new models. So far, synthetic biology has produced diagnostic tools for diseases such as HIV and hepatitis viruses as well as devices from biomolecular parts with interesting functions. The term “synthetic biology” was first used on genetically engineered bacteria that were created with recombinant DNA technology which was synonymous with bioengineering. Later the term “synthetic biology” was used as a mean to redesign life which is an extension of biomimetic chemistry, where organic synthesis is used to generate artificial molecules that mimic natural molecules such as enzymes. Synthetic biologists are trying to assemble unnatural components to support Darwinian evolution. Recently, the engineering community is seeking to extract components from the biological systems to test and confirm them as building units to be reassembled in a way that can mimic the living nature. In the engineering aspect of synthetic biology, the suitable parts are the ones that can contribute independently to the whole system so that the behavior of an assembly can be predicted. DNA consists of double-stranded anti-parallel strands each having four various nucleotides assembled from bases, sugars and phosphates which are made of carbon, nitrogen, oxygen, hydrogen and phosphorus atoms. In the Watson-Crick model, A pairs with T and G pairs with C although occasionally some diversity exists. This simplification doesn’t exist in proteins. With analysis and observation alone, scientists convince themselves that the paradigms are the truth and if the data contradicts the theory, the data normally is discarded as an error, where synthesis encourages scientists to cross into the new land and define new theories. The same synthesis has long been used in chemistry such as chromatography. The combination of chemistry, biology and engineering can therefore create artificial Darwinian systems.
<!-- Feel free to add brief descriptions to your research interests as well -->
# Interest 1
# Interest 2
# Interest 3


==Publications==
==Publications==

Revision as of 20:20, 3 July 2010

I am a new member of OpenWetWare!

Contact Info

Azadeh Khamooshi (an artistic interpretation)

I work in the Your Lab at XYZ University. I learned about OpenWetWare from Referred by a colleague, and I've joined because I am currently conducting research on Synthetic Biology and would like to share knowledge and network with other researchers..

Education

  • Year, PhD, Institute
  • Year, MS, Institute
  • Year, BS, Institute

There are two types of synthetic biologists. The first group uses unnatural molecules to mimic natural molecules with the goal of creating artificial life. The second group uses natural molecules and assembles them into a system that acts unnaturally. In general, the goal is to solve problems that are not easily understood through analysis and observation alone and it is only achieved by the manifestation of new models. So far, synthetic biology has produced diagnostic tools for diseases such as HIV and hepatitis viruses as well as devices from biomolecular parts with interesting functions. The term “synthetic biology” was first used on genetically engineered bacteria that were created with recombinant DNA technology which was synonymous with bioengineering. Later the term “synthetic biology” was used as a mean to redesign life which is an extension of biomimetic chemistry, where organic synthesis is used to generate artificial molecules that mimic natural molecules such as enzymes. Synthetic biologists are trying to assemble unnatural components to support Darwinian evolution. Recently, the engineering community is seeking to extract components from the biological systems to test and confirm them as building units to be reassembled in a way that can mimic the living nature. In the engineering aspect of synthetic biology, the suitable parts are the ones that can contribute independently to the whole system so that the behavior of an assembly can be predicted. DNA consists of double-stranded anti-parallel strands each having four various nucleotides assembled from bases, sugars and phosphates which are made of carbon, nitrogen, oxygen, hydrogen and phosphorus atoms. In the Watson-Crick model, A pairs with T and G pairs with C although occasionally some diversity exists. This simplification doesn’t exist in proteins. With analysis and observation alone, scientists convince themselves that the paradigms are the truth and if the data contradicts the theory, the data normally is discarded as an error, where synthesis encourages scientists to cross into the new land and define new theories. The same synthesis has long been used in chemistry such as chromatography. The combination of chemistry, biology and engineering can therefore create artificial Darwinian systems.

Publications

  1. Goldbeter A and Koshland DE Jr. An amplified sensitivity arising from covalent modification in biological systems. Proc Natl Acad Sci U S A. 1981 Nov;78(11):6840-4. DOI:10.1073/pnas.78.11.6840 | PubMed ID:6947258 | HubMed [Paper1]
  2. JACOB F and MONOD J. Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol. 1961 Jun;3:318-56. DOI:10.1016/s0022-2836(61)80072-7 | PubMed ID:13718526 | HubMed [Paper2]

    leave a comment about a paper here

  3. ISBN:0879697164 [Book1]

All Medline abstracts: PubMed | HubMed

Useful links