Tik:Publications: Difference between revisions

From OpenWetWare
Jump to navigationJump to search
No edit summary
 
(7 intermediate revisions by the same user not shown)
Line 2: Line 2:


==Journal Publications==
==Journal Publications==
#Xu B., '''Sathitsuksanoh N.''', Tang Y., Udvardi M., Zhang J., Shen Z., Balota M., Harich K., Zhang YHP,  Zhao B. 2012. Over-expressing LOV1 induced erect leaf, altered cell wall content and increased water use efficiency in switchgrass. PLOS One. 7(12): e47399
 
#Hastrup AC, Howell C., Larsen FH, '''Sathitsuksanoh N.''', Goodell B., and Jellison J. 2012. Differences in crystalline cellulose modification due to degradation by brown and white rot fungi. Fungal Biol. 116(10): 1052-1063
#'''Sathitsuksanoh N.''', Holtman K, Yelle D., Morgan t., Stavila V.,Pelton J., Blanch H., Simmons B., and George A. 2014. Lignin fate and characterization during ionic liquid biomass pretreatment for renewable chemicals and fuels production. '''''Green Chem.''''' DOI: 10.1039/c3gc42295j
#'''Sathitsuksanoh N.''', Zhu Z., Zhang YHP. 2012. Cellulose Solvent-Based Pretreatment for Corn Stover and Avicel: Concentrated Phosphoric Acid versus Ionic Liquid [BMIM]Cl. Cellulose. 19(4) 1161-1172
#'''Sathitsuksanoh N.''', Xu B., Zhao B., Zhang YHP. 2013. Overcoming biomass recalcitrance by combining genetically modified switchgrass and cellulose solvent-based lignocellulose pretreatment. '''''PLOS One.''''' 8(9): e73523
#'''Sathitsuksanoh N.''', Zhu Z., and Zhang YHP. 2012. Cellulose solvent- and organic solvent-based lignocellulose fractionation enabled efficient sugar release from a variety of lignocellulosic feedstocks. Biores. Technol. 117: 228-233
#Shi J., Gladden J.M., '''Sathitsuksanoh N.''', Kambam P., Sandoval L., Mitra D., Zhang S., George A., Singer S.W., Simmons B.A. and Singh S. 2013. One-pot ionic liquid pretreatment and saccharification of switchgrass. '''''Green Chem.''''' 15, 2579-2589
#You C., Zhang XZ., '''Sathitsuksanoh N.''', Lynd LR., Zhang YHP. 2012. Ex vivo cellulosome-microbe complexes expedite microbial cellulose utilization rate greatly especially on low-accessibility recalcitrant cellulose. Appl. Environ. Microbiol. 78(5):1437-1444
#Müller J., MacEachran D., Burd H., '''Sathitsuksanoh N.''', Bi C., Yeh Y.C., Lee TS., Hillson N., Chhabra S., Singer S., and Beller H. 2013. Engineering of Ralstonia eutropha H16 for Autotrophic and Heterotrophic Production of Methyl Ketones. '''''Appl. Environ. Microbiol.''''' 79 (14):4433-9
#You C., Chen HG., Myung S.,'''Sathitsuksanoh N.''', Ma H., Zhang XZ., Li J., Zhang YHP. 2013. Enzymatic Transformation of Non-Food Cellulosic Materials to Value-Added Amylose. '''''PNAS.''''' 110 (18): 7182-7187
#Sun N., Liu H., '''Sathitsuksanoh N.''', Sawant M., Bonito A., Tran K.,Stavila V., George A., Sale K., Singh S., Simmons B. and Holmes B. 2013. Acid Catalyzed Hydrolysis of Switchgrass in Ionic Liquid and Separation of Sugars Using Liquid-Liquid Extraction. '''''Biotechnol. Biofuels.''''' 6: 39
#Groff D., George A., Sun N., '''Sathitsuksanoh N.''', Bokinsky G., Simmons B., Holmes B., Keasling J. 2013. Acid Enhanced Ionic Liquid Pretreatment of Biomass. '''''Green Chem.''''' 15, 1264-1267
#Xu B., '''Sathitsuksanoh N.''', Tang Y., Udvardi M., Zhang J., Shen Z., Balota M., Harich K., Zhang YHP,  Zhao B. 2012. Over-expressing LOV1 induced erect leaf, altered cell wall content and increased water use efficiency in switchgrass. '''''PLOS One.''''' 7(12): e47399
#Hastrup AC, Howell C., Larsen FH, '''Sathitsuksanoh N.''', Goodell B., and Jellison J. 2012. Differences in crystalline cellulose modification due to degradation by brown and white rot fungi. '''''Fungal Biol.''''' 116(10): 1052-1063
#'''Sathitsuksanoh N.''', Zhu Z., Zhang YHP. 2012. Cellulose Solvent-Based Pretreatment for Corn Stover and Avicel: Concentrated Phosphoric Acid versus Ionic Liquid [BMIM]Cl. '''''Cellulose.''''' 19(4) 1161-1172
#'''Sathitsuksanoh N.''', Zhu Z., and Zhang YHP. 2012. Cellulose solvent- and organic solvent-based lignocellulose fractionation enabled efficient sugar release from a variety of lignocellulosic feedstocks. '''''Biores. Technol.''''' 117: 228-233
#You C., Zhang XZ., '''Sathitsuksanoh N.''', Lynd LR., Zhang YHP. 2012. Ex vivo cellulosome-microbe complexes expedite microbial cellulose utilization rate greatly especially on low-accessibility recalcitrant cellulose. '''''Appl. Environ. Microbiol.''''' 78(5):1437-1444
#Xue B., Escamilla-Treviño L.L., '''Sathitsuksanoh N.''', Shen Z., Shen H., Zhang YHP, Dixon R., Zhao B., 2011. Silencing of 4-Coumarate: Coenzyme A ligase in switchgrass leads to reduced lignin content and improved fermentable sugar yields for biofuel production. '''''New Phytologist''''' (in press)
#Xue B., Escamilla-Treviño L.L., '''Sathitsuksanoh N.''', Shen Z., Shen H., Zhang YHP, Dixon R., Zhao B., 2011. Silencing of 4-Coumarate: Coenzyme A ligase in switchgrass leads to reduced lignin content and improved fermentable sugar yields for biofuel production. '''''New Phytologist''''' (in press)
#Zhang XZ, '''Sathitsuksanoh N.''', Zhu ZG, Zhang YHP., 2011. One-Step Production of Lactate from Cellulose as Sole Carbon Source without Any Other Organic Nutrient by Recombinant Cellulolytic Bacillus subtilis. '''''Metabolic Engineering''''' (in press)
#Zhang XZ, '''Sathitsuksanoh N.''', Zhu ZG, Zhang YHP., 2011. One-Step Production of Lactate from Cellulose as Sole Carbon Source without Any Other Organic Nutrient by Recombinant Cellulolytic Bacillus subtilis. '''''Metabolic Engineering''''' (in press)
Line 28: Line 36:


==Book Chapters==
==Book Chapters==
 
#'''Sathitsuksanoh N.''', George A., and Zhang YHP. 2013. New lignocellulose pretreatments by using cellulose solvents: a review. '''''Journal of Chemical Technology and Biotechnology''''' 88(2): 169-180
#Rollin J., '''Sathitsuksanoh N.''', Zhu Z., Zhang YHP. 2011. Chapter X. Cellulose Solvent- and Organic Solvent-based Lignocellulose Fractionation (COSLIF). '''''Wiley Encyclopedia of Energy: Science, Technology, and Applications.''''' John Wiley & Sons. pp.xxxx-xxxx.
#Rollin J., '''Sathitsuksanoh N.''', Zhu Z., Zhang YHP. 2011. Chapter X. Cellulose Solvent- and Organic Solvent-based Lignocellulose Fractionation (COSLIF). '''''Wiley Encyclopedia of Energy: Science, Technology, and Applications.''''' John Wiley & Sons. pp.xxxx-xxxx.
#'''Sathitsuksanoh N'''., Zhu Z., Rollin J., and Zhang P. 2010. Chapter 16. Lignocellulose fractionation by using cellulose solvent and organic solvent in Bioalcohol production: '''''Biochemical conversion of lignocellulosic biomass''''' (ed. by Waldron, K.). Woodhead Publishing Ltd. pp.122-140.
#'''Sathitsuksanoh N'''., Zhu Z., Rollin J., and Zhang P. 2010. Chapter 16. Lignocellulose fractionation by using cellulose solvent and organic solvent in Bioalcohol production: '''''Biochemical conversion of lignocellulosic biomass''''' (ed. by Waldron, K.). Woodhead Publishing Ltd. pp.122-140.
#Zhang YHP., Zhu Z., Rollin J., and '''Sathitsuksanoh N.''' 2009. Chapter 20. Advances in cellulose solvent- and organic solvent-based lignocellulose fractionation (COSLIF) in Cellulose Solvents.  '''''ACS Symposium Series 1033'''''. Oxford University Press. pp.365-397.  
#Zhang YHP., Zhu Z., Rollin J., and '''Sathitsuksanoh N.''' 2009. Chapter 20. Advances in cellulose solvent- and organic solvent-based lignocellulose fractionation (COSLIF) in Cellulose Solvents.  '''''ACS Symposium Series 1033'''''. Oxford University Press. pp.365-397.  
#Lu Y., '''Sathitsuksanoh N.''', Yang H.Y., Chang B.K., Queen A.P., and Tatarchuk B.J. 2005. Chapter 25. Microfibrous Entrapped ZnO/Support Sorbents for High Contacting Efficiency H2S Removal from Reformate Streams in PEMFC Applications in Microreactor Technology and Process Intensification (ed. by Holladay, J.D. and Wang, Y.). '''''ACS Symposium Series 914.''''' Oxford University Press. pp.406-422.
#Lu Y., '''Sathitsuksanoh N.''', Yang H.Y., Chang B.K., Queen A.P., and Tatarchuk B.J. 2005. Chapter 25. Microfibrous Entrapped ZnO/Support Sorbents for High Contacting Efficiency H2S Removal from Reformate Streams in PEMFC Applications in Microreactor Technology and Process Intensification (ed. by Holladay, J.D. and Wang, Y.). '''''ACS Symposium Series 914.''''' Oxford University Press. pp.406-422.

Latest revision as of 22:40, 15 February 2014

Home      Research      People      Publications      Curriculum Vitae      News      Contact     


Journal Publications

  1. Sathitsuksanoh N., Holtman K, Yelle D., Morgan t., Stavila V.,Pelton J., Blanch H., Simmons B., and George A. 2014. Lignin fate and characterization during ionic liquid biomass pretreatment for renewable chemicals and fuels production. Green Chem. DOI: 10.1039/c3gc42295j
  2. Sathitsuksanoh N., Xu B., Zhao B., Zhang YHP. 2013. Overcoming biomass recalcitrance by combining genetically modified switchgrass and cellulose solvent-based lignocellulose pretreatment. PLOS One. 8(9): e73523
  3. Shi J., Gladden J.M., Sathitsuksanoh N., Kambam P., Sandoval L., Mitra D., Zhang S., George A., Singer S.W., Simmons B.A. and Singh S. 2013. One-pot ionic liquid pretreatment and saccharification of switchgrass. Green Chem. 15, 2579-2589
  4. Müller J., MacEachran D., Burd H., Sathitsuksanoh N., Bi C., Yeh Y.C., Lee TS., Hillson N., Chhabra S., Singer S., and Beller H. 2013. Engineering of Ralstonia eutropha H16 for Autotrophic and Heterotrophic Production of Methyl Ketones. Appl. Environ. Microbiol. 79 (14):4433-9
  5. You C., Chen HG., Myung S.,Sathitsuksanoh N., Ma H., Zhang XZ., Li J., Zhang YHP. 2013. Enzymatic Transformation of Non-Food Cellulosic Materials to Value-Added Amylose. PNAS. 110 (18): 7182-7187
  6. Sun N., Liu H., Sathitsuksanoh N., Sawant M., Bonito A., Tran K.,Stavila V., George A., Sale K., Singh S., Simmons B. and Holmes B. 2013. Acid Catalyzed Hydrolysis of Switchgrass in Ionic Liquid and Separation of Sugars Using Liquid-Liquid Extraction. Biotechnol. Biofuels. 6: 39
  7. Groff D., George A., Sun N., Sathitsuksanoh N., Bokinsky G., Simmons B., Holmes B., Keasling J. 2013. Acid Enhanced Ionic Liquid Pretreatment of Biomass. Green Chem. 15, 1264-1267
  8. Xu B., Sathitsuksanoh N., Tang Y., Udvardi M., Zhang J., Shen Z., Balota M., Harich K., Zhang YHP, Zhao B. 2012. Over-expressing LOV1 induced erect leaf, altered cell wall content and increased water use efficiency in switchgrass. PLOS One. 7(12): e47399
  9. Hastrup AC, Howell C., Larsen FH, Sathitsuksanoh N., Goodell B., and Jellison J. 2012. Differences in crystalline cellulose modification due to degradation by brown and white rot fungi. Fungal Biol. 116(10): 1052-1063
  10. Sathitsuksanoh N., Zhu Z., Zhang YHP. 2012. Cellulose Solvent-Based Pretreatment for Corn Stover and Avicel: Concentrated Phosphoric Acid versus Ionic Liquid [BMIM]Cl. Cellulose. 19(4) 1161-1172
  11. Sathitsuksanoh N., Zhu Z., and Zhang YHP. 2012. Cellulose solvent- and organic solvent-based lignocellulose fractionation enabled efficient sugar release from a variety of lignocellulosic feedstocks. Biores. Technol. 117: 228-233
  12. You C., Zhang XZ., Sathitsuksanoh N., Lynd LR., Zhang YHP. 2012. Ex vivo cellulosome-microbe complexes expedite microbial cellulose utilization rate greatly especially on low-accessibility recalcitrant cellulose. Appl. Environ. Microbiol. 78(5):1437-1444
  13. Xue B., Escamilla-Treviño L.L., Sathitsuksanoh N., Shen Z., Shen H., Zhang YHP, Dixon R., Zhao B., 2011. Silencing of 4-Coumarate: Coenzyme A ligase in switchgrass leads to reduced lignin content and improved fermentable sugar yields for biofuel production. New Phytologist (in press)
  14. Zhang XZ, Sathitsuksanoh N., Zhu ZG, Zhang YHP., 2011. One-Step Production of Lactate from Cellulose as Sole Carbon Source without Any Other Organic Nutrient by Recombinant Cellulolytic Bacillus subtilis. Metabolic Engineering (in press)
  15. Wang Y., Huang W., Sathitsuksanoh N., Zhu Z., and Zhang YHP, 2010. Biohydrogenation from Biomass Sugar Mediated by in vitro Synthetic Enzymatic Pathways. Chemistry & Biology 18(3): 371-380
  16. Sathitsuksanoh N., Zhu Z., Wi S., Zhang YHP. Cellulose Solvent-Based Biomass Pretreatment Breaks Highly Ordered Hydrogen Bonds in Cellulose Fibers of Switchgrass. Biotechnology & Bioengineering, DOI: 10.1002/bit.22964.
  17. Rollin J., Zhu Z., Sathitsuksanoh N., Zhang YHP. Increasing cellulose accessibility is more important than removing lignin: A comparison of cellulose solvent-based lignocellulose fractionation and soaking in aqueous ammonia. Biotechnology & Bioengineering, DOI: 10.1002/bit.22919.
  18. Zhang X., Sathitsuksanoh N., and Zhang YHP. 2010. Glycoside hydrolase family 9 processive endoglucanase from Clostridium phytofermentans: heterologous expression, characterization, and synergy with family 48 cellobiohydrolase. Bioresources Technology, 101:5534-5538.
  19. Sathitsuksanoh N.*, Wang D., Yang H.Y., Lu Y., and Park M. 2010. Photoluminescent Properties of Encapsulated ZnO in Porous Carbon Matrix. Acta Materialia 58: 373-378
  20. Zhang X., Zhang Z., Zhu Z., Sathitsuksanoh N., Zhang YHP. 2009. The noncellulosomal Family 48 Cellobiohydrolase from Clostridium phytofermentans ISDg: Heterologous Expression, Characterization, and Processivity. Applied Microbiology and Biotechnology 86:525–533.
  21. Sathitsuksanoh N., Zhu Z., Ho T., Bai M., Zhang YHP. 2010. Bamboo saccharification through cellulose solvent-based biomass pretreatment followed by enzymatic hydrolysis at ultra-low cellulase loadings. Bioresources Technology 101:4926-4929.
  22. Zhu Z., Sathitsuksanoh N., Vinzant T., Schell D., McMillan J., Zhang P. 2009. Direct quantitative determination of adsorbed cellulase on lignocellulosic biomass with its application to study cellulase desorption for potential recycling. Analyst 134: 2267-2272.
  23. Sathitsuksanoh N., Zhu Z., Templeton N., Rollin J., Harvey S., Zhang Y-HP. 2009. Saccharification of a potential bioenergy crop, Phragmites australis (common reed), by lignocellulose fractionation followed by enzymatic hydrolysis at decreased cellulase loadings. Industrial & Engineering Chemistry Research 48: 6441-6447.
  24. Zhu Z., Sathitsuksanoh N., Vinzant T., Schell D., McMillan J., Zhang P. 2009 Comparative study of corn stover pretreated by dilute acid and cellulose solvent-based lignocellulose fractionation: Enzymatic hydrolysis, supramolecular structure, and substrate accessibility. Biotechnology & Bioengineering 103: 715-724.
  25. Sathitsuksanoh N., Yang H.Y., Cahela D.R., and Tatarchuk B.J. 2007 Immobilization of CO2 by Aqueous K2CO3 Using Microfibrous Media Entrapped Small Particulates for Battery and Fuel Cell Applications. Journal of Power Sources 173: 478-486.
  26. Wang D., Seo H.W., Tin C.C., Bozack M.J., Williams J.R., Park M., Sathitsuksanoh N., Cheng A.J., Tzeng Y.H. 2006. Effects of Postgrowth Annealing Treatment on the Photoluminescence of Zinc Oxide Nanorods. Journal of Applied Physics 99(11): 113509/1-113509/5.
  27. Mondal K., Sathitsuksanoh N., Lalvani S.B. 2005. Electrodeposition and Characterization of Films of CoP. Plating and Surface Finishing 92(1): 42-44.
  28. Tzeng Y., Chen Y., Sathitsuksanoh N., Liu C. 2004. Electrochemical Behaviors and Hydration Properties of Multi-wall Carbon Nanotube Coated Electrodes in Water. Diamond and Related Materials 13(4-8): 1281-1286.
  29. Mondal K., Sathitsuksanoh N., Croft M., Lalvani S.B. 2003. X-ray Absorotipn Spectroscopic Analysis of Amorphous Cr-P Obtained via Electrodeposition. Journal of Materials Science Letters 22(9): 655-657.
  30. Mondal K., Sathitsuksanoh N., Lalvani S.B. 2003. Extended X-ray Absorption Fine Structure Analysis of Ni-P and Fe-P Amorphous Alloys at the Phosphorous K-edge. Journal of Materials Science Letters 22(2): 95-97.
  31. Lalvani S.B., Mondal K., Sathitsuksanoh N., Wiltowski T., and Xiao Y. 2001. Characterization of Ni-P and Fe-P by X-ray Absorption Spectroscopy. Journal of Material Sciences Letters 20(12): 1097-1098.

Book Chapters

  1. Sathitsuksanoh N., George A., and Zhang YHP. 2013. New lignocellulose pretreatments by using cellulose solvents: a review. Journal of Chemical Technology and Biotechnology 88(2): 169-180
  2. Rollin J., Sathitsuksanoh N., Zhu Z., Zhang YHP. 2011. Chapter X. Cellulose Solvent- and Organic Solvent-based Lignocellulose Fractionation (COSLIF). Wiley Encyclopedia of Energy: Science, Technology, and Applications. John Wiley & Sons. pp.xxxx-xxxx.
  3. Sathitsuksanoh N., Zhu Z., Rollin J., and Zhang P. 2010. Chapter 16. Lignocellulose fractionation by using cellulose solvent and organic solvent in Bioalcohol production: Biochemical conversion of lignocellulosic biomass (ed. by Waldron, K.). Woodhead Publishing Ltd. pp.122-140.
  4. Zhang YHP., Zhu Z., Rollin J., and Sathitsuksanoh N. 2009. Chapter 20. Advances in cellulose solvent- and organic solvent-based lignocellulose fractionation (COSLIF) in Cellulose Solvents. ACS Symposium Series 1033. Oxford University Press. pp.365-397.
  5. Lu Y., Sathitsuksanoh N., Yang H.Y., Chang B.K., Queen A.P., and Tatarchuk B.J. 2005. Chapter 25. Microfibrous Entrapped ZnO/Support Sorbents for High Contacting Efficiency H2S Removal from Reformate Streams in PEMFC Applications in Microreactor Technology and Process Intensification (ed. by Holladay, J.D. and Wang, Y.). ACS Symposium Series 914. Oxford University Press. pp.406-422.