Talk:CH391L/S13/DnaAssembly

From OpenWetWare

(Difference between revisions)
Jump to: navigation, search
(Assembling nonstandard bases)
Line 21: Line 21:
'''[[User:Gabriel Wu|Gabriel Wu]] 18:23, 4 February 2013 (EST)''': Added an introduction motivating the page.  Explaining the need for "putting together" DNA.
'''[[User:Gabriel Wu|Gabriel Wu]] 18:23, 4 February 2013 (EST)''': Added an introduction motivating the page.  Explaining the need for "putting together" DNA.
 +
*'''[[User:Neil R Gottel|Neil R Gottel]] 13:11, 7 February 2013 (EST)''':I was looking into Ginkgo Bioworks because [http://www.sciencenews.org/view/feature/id/347263/description/Factory_of_Life this article] at sciencenews mentioned they rely heavily on their own special CAD tools when designing their organisms, and found their blog. It hasn't been updated in a year, but their [http://blog.ginkgobioworks.com/2012/01/14/commercial-gene-synthesis/ last post] was talking about how slow and variable the turn-around times are for gene synthesis. They've got a chart showing the length of each order, and the time it took between when the order was placed, and when it was received. Some of their genes (or "synthons" as they call it, since some sequences are not whole genes) took more than two months to synthesize!
== Assembling nonstandard bases ==
== Assembling nonstandard bases ==

Revision as of 14:11, 7 February 2013

Gabriel Wu 23:39, 27 January 2013 (EST): Minor point: Companies like biomatik are not included on the genspace list. Is it necessary to make a wiki page with a "more" comprehensive list?

Gabriel Wu 00:49, 28 January 2013 (EST): This is a nice anecdotal piece of information that shows some concrete numbers for what DNA synthesis might have cost in June 2011. Unfortunately, it's not really appropriate for the main wiki page, but I post it here to live for eternity! Also, if anyone finds a more legitimate way of presenting this kind of data on the main page, then this comment might actually be useful. [1]

Gabriel Wu 13:10, 4 February 2013 (EST): These are notes to myself. They help illustrate techniques in cloning or trends in DNA synthesis

Gabriel Wu 18:23, 4 February 2013 (EST): Added an introduction motivating the page. Explaining the need for "putting together" DNA.

  • Neil R Gottel 13:11, 7 February 2013 (EST):I was looking into Ginkgo Bioworks because this article at sciencenews mentioned they rely heavily on their own special CAD tools when designing their organisms, and found their blog. It hasn't been updated in a year, but their last post was talking about how slow and variable the turn-around times are for gene synthesis. They've got a chart showing the length of each order, and the time it took between when the order was placed, and when it was received. Some of their genes (or "synthons" as they call it, since some sequences are not whole genes) took more than two months to synthesize!

Assembling nonstandard bases

  • Catherine I. Mortensen 22:07, 6 February 2013 (EST): I noticed you mentioned that nontraditional bases could be assembled... I'm taking genetics now so I may learn about this soon but could you give an example when a nontraditional base would be useful? I assume a nontraditional base refers to another purine or pyrimidine?
    • Yunle Huang 10:02, 7 February 2013 (EST): One example I found was 2-Aminopurine. 2-Aminopurine is a fluorescent nucleic acid analogues can be used in nucleic acid research. Since it pairs with both thymine and cytosine, it can also be used for mutagenesis. http://www.pnas.org/content/83/15/5434

iGEM connection

  • Jeffrey E. Barrick 00:35, 7 February 2013 (EST):Someone mentioned that CPEC was started as an iGEM project. Can you like to the relevant team website as part of the topic so that we can take a look at it?
Personal tools