Streptavidin purification of DNA fragments

From OpenWetWare
Revision as of 03:47, 23 February 2009 by Torsten Waldminghaus (talk | contribs) (→‎Restriction digests)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

Biotin Primers

  • Make primers for PCR reactions with a 5' biotin modification
    • HPLC purification of these primers is desirable to eliminate short primers and ones without a biotin tag
    • Virtually all oligo manufacturers can supply 5' biotin
    • An alternative is to make 5' amine primers and link biotin to the amine group

PCR Reaction

  • Normal PCR reaction conditions apply.
  • Approximately 1 pmol/μl biotinylated primer should be used.
  • For some reason, Phusion does not work (no product)


  • 100 μl reaction
  • 100 μl PCR Supermix High Fidelity (Invitrogen)
  • 1.5 μl Suffix-FB biotinylated primer (30 pmol/μl)
  • 1.5 μl Prefix-RB biotinylated primer (30 pmol/μl)
  • 0.5 μl diluted plasmid backbone template DNA (10 ng/μl)


  • Cycle 36x
  • initial denature 95° 2 min
  • 36 cycles
    • 95° 20 sec
    • 62° 20 sec
    • 68° 4:00 min
  • final extension 68° 20 min

Post PCR Cleanup

  • Elimination of PCR enzymes and dNTPs is required prior to enzymatic cutting
  • Add 2 μl 500 mM EDTA
  • Add 1 μl Proteinase-K
  • digest at 50° for 1 hour
  • heat kill Proteinase K at 80° for 20 minutes
  • Add 5x (500 μl) Qiagen buffer PB, vortex
  • Spin in Qiagen column at 8000g 1 minute
  • Pour flow through back into the column, spin again
  • Discard flow through, add 500 μl buffer PB, spin again
  • Discard flow through, add 750 μl wash PE, spin again
  • Discard flow through, add 750 μl wash PE, spin again
  • Discard flow through, spin again at 12000g, 2 minutes to dry
  • Transfer column to a clean 1.7 ml tube, add 30 μl EB heated to 50°, spin at 8000g 1 minute
  • Add a further 30 μl EB, spin again
  • Discard the column and retain the eluted DNA
  • measure yield with the Nanodrop, expect 150-250 ng/μl in 45 μl

Restriction digests

  • Digest in a 300 μl final volume
  • Initial DNA is 45 μl from the elution
  • Add 30 μl Buffer 2
  • Add 3 μl BSA
  • Add 212 μl DI water
  • Add 5 μl EcoRI
  • Add 5 μl PstI
  • Add 1 μl DpnI
  • Digest 2 hours at 37°
  • Heat kill 20 minutes at 80°

Binding and removing uncut DNA and short ends to streptavidin-agarose

  • For binding uncut and short fragments, the salt concentration must be increased.
    • Adjust restriction digest to 1 M NaCl by adding 60 μl of 5M NaCl
  • During the binding reaction, the exposed cut ends must be protected from exonucleases by removing the magnesium
    • Chelate Mg++ by adding 20 μl of 500 mM EDTA
  • Use Pierce Streptavidin-agarose beads, Pierce 20349 [[1]]
    • These have high capacity, around 75 pmol/μl
  • Dispense 100 μl of the settled beads into a 2 ml tube
  • Add 1.7 ml of binding buffer, resuspending the beads
  • Wash 30 minutes at room temperature with agitation
  • Centrifuge at 8000g for 1 minute
  • Discard the supernatent
  • Add 1.7 ml of binding buffer, resuspending the beads
  • Wash for 30 minutes at room temperature with agitation
  • Centrifuge at 8000g for 1 minute
  • Discard the supernatent
  • Add 300 μl of binding buffer and resuspend the beads
  • Add the cut and adjusted PCR product (380 μl)
  • Bind overnight at room temperature with agitation
  • Centrifuge at 8000g for 1 minute in a Bio101 spin filter cartridge
  • Discard the filter
  • Add 1 μl of pellet-paint
  • Add 500 μl of isopropanol and mix
  • Freeze for 30 minutes at -80° to form a gel
  • Centrifuge at 17000g for 30 minutes to precipitate the recovered DNA
  • Wash the DNA pellet with 70% ethanol
  • Resuspend the purified DNA in 50 μl TE
  • Quantitate the DNA
    • expect about a 50% yield over the purified PCR product (3 to 6 μg total, 50 to 150 ng/μl)

Testing the purified DNA

  • Mix a master ligation mix containing
    • 250 ng of DNA
    • 7.5 μl T4 DNA ligase buffer
    • water to 75 μl
  • Set aside 15 μl as a reference band A and add to it 1 μl of 500 mM EDTA to remove magnesium
  • Add 0.3 μl T4 DNA ligase
  • Restriction enzymes require some salt for activity
    • Adjust salt concentration to 25 mM by addition of 1.6 μl of 1 M NaCl, mix
  • Aliquot 15 μl samples to tubes B, C, D, and E
    • Add 0.3 μl EcoRI to sample C
    • Add 0.3 μl PstI to sample D
    • Add 0.3 μl EcoRI and 0.3 μl PstI to sample E
  • Ligate 60 minutes at 16°
  • Cut for 10 minutes at 37°
  • Heat kill for 20 minutes at 80°
  • Run an 0.8% gel
    • Ligated band B should show little single length fragment and a high MW smear, with some double and quad length fragments
    • Ligated and single cut bands C and D should show double length fragments
    • Ligated and double cut band E should show single length fragments

Binding buffer

  • 1 M NaCl
  • 20 mM Tris-HCl pH 7.5
  • 5 mM EDTA pH 8.0
  • 0.1% NP-40 detergent

Construction Plasmid Biotin Primers

  • Primers amplify any Biobrick plasmid backbone
  • Order 50 nM, 5' biotin modification, HPLC purified
  • GTT TCT TCC TCT AGA AGC GGC CGC GAA TTC,Prefix-RB
  • GT TTC TTC TAC TAG TAG CGG CCG CTG CAG,Suffix-FB
  • Dilute to 30 pmol/μl with TE
  • Optimal annealing temperature seems to be about 62°

Ligation and Restriction enzyme buffers

  • T4 DNA Ligase Buffer
    • 50 mM Tris-HCl
    • 10 mM MgCl2
    • 1 mM ATP
    • 10 mM DTT
    • 25 ng/μl BSA
    • pH 7.5
  • EcoRI buffer
    • 100 mM Tris-HCl
    • 50 mM NaCl
    • 10 mM MgCl2
    • pH 7.5
    • star activity with NaCl < 25 mM
  • PstI (Buffer 3)
    • 50 mM Tris-HCl
    • 100 mM NaCl
    • 10 mM MgCl2
    • 1 mM DTT
    • low salt gives star activity