Senecio Research Network: Difference between revisions

From OpenWetWare
Jump to navigationJump to search
 
(86 intermediate revisions by the same user not shown)
Line 14: Line 14:
[[Image:Groundsel3MorphsA.tif|thumb|right|Flower head variation in ''Senecio vulgaris''. In the first genetic study on ''Senecio'', Trow (1912) showed that presence/absence of ray florets in flower heads of ''S. vulgaris'' was controlled by a single genetic locus. Almost a century later, Kim ''et al.'' (2008) showed that this locus comprised at least two cycloidea-like, regulatory genes, ''RAY 1'' and ''RAY2''. The radiate morph originated within the last 200 years in Britain after introgression of alleles at the ''RAY'' locus from the radiate invasive species, ''S. squalidus'', into the formerly non-radiate ''S. vulgaris''. Presence of ray florets increases pollinator attraction and outcrossing rate in ''S. vulgaris''.]]
[[Image:Groundsel3MorphsA.tif|thumb|right|Flower head variation in ''Senecio vulgaris''. In the first genetic study on ''Senecio'', Trow (1912) showed that presence/absence of ray florets in flower heads of ''S. vulgaris'' was controlled by a single genetic locus. Almost a century later, Kim ''et al.'' (2008) showed that this locus comprised at least two cycloidea-like, regulatory genes, ''RAY 1'' and ''RAY2''. The radiate morph originated within the last 200 years in Britain after introgression of alleles at the ''RAY'' locus from the radiate invasive species, ''S. squalidus'', into the formerly non-radiate ''S. vulgaris''. Presence of ray florets increases pollinator attraction and outcrossing rate in ''S. vulgaris''.]]


{| width:100%; height:300px border="7"
{| width:100%; height:250px border="7"
|-  
|-  
| '''Labs'''
| '''Labs'''
*[[User:Richard J. Abbott|Richard Abbott (St Andrews University, UK)]]
*[[User:Richard J. Abbott|Richard Abbott (St Andrews University, UK)]]
*[http://biology.st-andrews.ac.uk/staffProfile.aspx?sunID=db60 Daniel Barker (St Andrews University, UK)]
*[https://www.dur.ac.uk/research/directory/staff/?mode=staff&id=11637 Adrian Brennan (Durham University, UK)]
*[https://www.dur.ac.uk/research/directory/staff/?mode=staff&id=11637 Adrian Brennan (Durham University, UK)]
*[http://www.bristol.ac.uk/biology/research/ecological/genetics Jon Bridle (Bristol University, UK)]
*[http://www.bristol.ac.uk/biology/research/ecological/genetics Jon Bridle (Bristol University, UK)]
Line 30: Line 29:
*[http://science.leidenuniv.nl/index.php/ibl/klinkhamer Peter Klinkhamer (Leiden University, Netherlands)]
*[http://science.leidenuniv.nl/index.php/ibl/klinkhamer Peter Klinkhamer (Leiden University, Netherlands)]
*[http://www.adelaide.edu.au/directory/andrew.lowe Andrew Lowe (Adelaide University, Australia)]
*[http://www.adelaide.edu.au/directory/andrew.lowe Andrew Lowe (Adelaide University, Australia)]
*[http://www.uni-kiel.de/botanik/ober Dietrich Ober (KIel University, Germany)]
*[http://www.ortizbarrientoslab.me Daniel Ortiz-Barrientos (Queensland University, Australia)]
*[http://www.ortizbarrientoslab.me Daniel Ortiz-Barrientos (Queensland University, Australia)]
*[http://www.unil.ch/dee/page86963.html John Pannell (University of Lausanne, Switzerland)]
*[http://www.unil.ch/dee/page86963.html John Pannell (University of Lausanne, Switzerland)]
Line 36: Line 34:
*[http://www.uws.edu.au/hie/people/researchers/doctor_paul_rymer Paul Rymer (University of Western Sydney, Australia)]
*[http://www.uws.edu.au/hie/people/researchers/doctor_paul_rymer Paul Rymer (University of Western Sydney, Australia)]
*[http://science.leidenuniv.nl/index.php/ibl/vrieling Klass Vrieling (Leiden University, Netherlands)]
*[http://science.leidenuniv.nl/index.php/ibl/vrieling Klass Vrieling (Leiden University, Netherlands)]
 
*[https://research.monash.edu/en/persons/greg-walter Greg Walter (Monash University, Australia)]
|'''Post-Docs'''
*[http://www.bristol.ac.uk/biology/research/ecological/genetics/plantgenetics/batstone.t.html Tom Batstone (Bristol University, UK)]
*[http://www.cos.uni-heidelberg.de/index.php/g.muir?l=_e Graham Muir (Heidelberg University)]
 
 
 
 
 
 
 
 
 
 




Line 55: Line 40:
| '''Grad Students'''
| '''Grad Students'''
*[http://web.me.com/oblab/lab-members.html Diana Bernal (Queensland University, Australia)]
*[http://web.me.com/oblab/lab-members.html Diana Bernal (Queensland University, Australia)]
*[http://biology.st-andrews.ac.uk/staffProfile.aspx?sunID=cpc22 Charles Coyle (St Andrews University, UK)]
*[http://www.adelaide.edu.au/directory/eleanor.dormontt Eleanor Dormontt (Adelaide University, Australia)]
*[http://web.me.com/oblab/lab-members.html Huanie Liu (Queensland University, Australia)]
*[http://web.me.com/oblab/lab-members.html Huanie Liu (Queensland University, Australia)]
*[http://web.me.com/oblab/lab-members.html Maria Claro Melo (Queensland University, Australia)]
*[http://web.me.com/oblab/lab-members.html Maria Claro Melo (Queensland University, Australia)]
*[http://www.gatsby.org.uk/~/media/Files/Plant%20Science/Owen%20Osborne.ashx Owen Osborne (Oxford University, UK)]
*[http://web.me.com/oblab/lab-members.html Federico Roda (Queensland University, Australia)]
*[http://web.me.com/oblab/lab-members.html Federico Roda (Queensland University, Australia)]
*[http://www.uq.edu.au/~uqdortiz/People.html Greg Walter (Queensland University, Australia)]




Line 105: Line 82:


==Recent Publications==
==Recent Publications==
[[Image:New_Phytol_Cover_April_2020.jpg|thumb|left|[https://nph.onlinelibrary.wiley.com/doi/full/10.1111/nph.16434  ''Senecio'' as a model system for integrating studies of genotype, phenotype and fitness. Walter et al. 2020. Tansley Review. New Phytol. 226: 326-344.]]]
*'''2023'''
[https://doi.org/10.1080/17550874.2023.2209786 Abbott RJ (2023) Edaphic ecotypic divergence in ''Senecio vulgaris'' and the evolutionary potential of predominantly self-fertilising species. ''Plant Ecology & Diversity'' doi.org/10.1080/17550874.2023.2209786.]
[https://nph.onlinelibrary.wiley.com/doi/10.1111/nph.18744 Walter GM, Clark J, Terranova D, Cozzolino S, Cristaudo A, Hiscock SJ, Bridle J (2023) Hidden genetic variation in plasticity provides the potential for rapid adaptation to novel environments. ''New Phytologist'' 239: 374-387.]
[https://www.nature.com/articles/s41437-022-00576-4 Wong ELY, Nevado B, Hiscock SJ, Filatov DA (2023) Rapid evolution of hybrid breakdown following recent divergence with gene flow in ''Senecio'' species on Mount Etna, Sicily. ''Heredity'' 130: 40-52.]
*'''2022'''
[https://www.tandfonline.com/doi/full/10.1080/17550874.2022.2130018?src= Milton JJ, Affenzeller M, Abbott RJ, Comes HP (2022) Plant speciation in the Namib Desert: potential origin of a widespread derivative species from a narrow endemic. ''Plant Ecology & Diversity'' 15:329-353]
[https://onlinelibrary.wiley.com/doi/10.1111/evo.14478 Walter GM, Clark J, Cristaudo A, Terranova D, Nevo B, Catara S, Paunov M, Velikova V, Filatov D, Cozzolino S, Hiscock SJ, Bridle JR (2022) Adaptive divergence generates distinct plastic responses in two closely related ''Senecio'' species. ''Evolution'' 76: 1229–1245.]
[https://www.frontiersin.org/articles/10.3389/fpls.2022.907363/full Wong ELY, Hiscock SJ, Filatov DA (2022) The role of interspecific hybridisation in adaptation and speciation: Insights from studies in ''Senecio''. ''Frontiers in Plant Science'' 13: 907363.]
*'''2021'''
[https://doi.org/10.1093/molbev/msab207 James ME, Arenas-Castro H, Groh JS, Engelstädter J, Ortiz-Barrientos D (2021). Highly replicated evolution of parapatric ecotypes. ''Molecular Biology & Evolution'' 38:4805-4821]
[https://doi.org/10.1111/evo.14387 James ME, Wilkinson MJ, Bernal DM, Liu H, North H, Engelstädter J, Ortiz-Barrientos D (2021). Phenotypic and genotypic parallel evolution in parapatric ecotypes of ''Senecio''. ''Evolution'' 75: 3115-3131]
[https://doi.org/10.1101/2021.02.04.429835 Walter GM, du Plessis S, Terranova D, la Spina E, Majorana MG, Pepe G, Clark J, Cozzolino S, Cristaudo A, Hiscock SJ, Bridle JR (2021) Adaptive maternal effects in early life history traits help to maintain ecological resilience in novel environments for two contrasting ''Senecio'' species. ''BioRxiv'' https://doi.org/10.1101/2021.02.04.429835]
[https://www.biorxiv.org/content/biorxiv/early/2021/02/08/2021.02.08.430333 Walter GM, Terranova D, Clark J, Cozzolino S,, Cristaudo A, Hiscock SJ, Bridle JR (2021) Plasticity in novel environments induces larger changes in genetic variance than adaptive divergence. ''BioRxiv''  https://doi.org/10.1101/2021.02.08.430333]
[https://doi.org/10.1073/pnas.2004901118 Wilkinson MC, Roda F, Walter GM, James ME, Nipper R, Walsh J, Allen SL, North HL, Beveridge CB, Ortiz-Barrientos D. (2021) Adaptive divergence in shoot gravitropism creates hybrid sterility in an Australian wildflower. ''PNAS'' 118 (47) e2004901118]
*'''2020'''
[https://doi.org/10.1111/mec.15630 Nevado B, Harris SA, Beaumont MA, Hiscock SJ (2020) Rapid homoploid hybrid speciation in British gardens: The origin of Oxford ragwort (''Senecio squalidus''). ''Molecular Ecology'' 29: 4221-4233]
[https://onlinelibrary.wiley.com/doi/epdf/10.1002/evl3.187 Walter GM, Richards TJ, Wilkinson MJ, Blows MW, Aguirre JD, Ortiz-Barrientos D (2020) Loss of ecologically important genetic variation in late generation hybrids reveals links between adaptation and speciation. ''Evolution Letters'' 4: 302-316.]
[https://nph.onlinelibrary.wiley.com/doi/full/10.1111/nph.16434 Walter G, Abbott RJ, Brennan AC, Bridle J, Chapman MA, Clark J, Filatov D, Nevado B, Ortiz-Barrientos D, Hiscock SJ (2020) ''Senecio'' as a model system for integrating studies of genotype, phenotype and fitness. ''New Phytologist'' 226: 326-344.]
[https://doi.org/10.1101/2020.01.24.918201 Walter G, Clark J, Cristaudo A, Nevado B, Catara S, Paunov M, Velikova V, Filatov D, Cozzolino S, Hiscock SJ, Bridle JR (2020) Adaptation to contrasting habitats underlies distinct plastic responses to environmental variation in two closely related ''Senecio'' species. ''BioRxiv''doi: http://dx.doi.org/10.1101/2020.01.24.918201.]
[https://doi.org/10.1111/mec.15319 Wong ELY, Nevado B, Osborne OG, Papadopulos AST, Bridle JR, Hiscock SJ, Filatov DA (2020) Strong divergent selection at multiple loci in two closely related species of ragworts adapted to high and low elevations on Mount Etna. ''Molecular Ecology'' 29: 394-412.]
*'''2019'''
[https://academic.oup.com/aobpla/advance-article/doi/10.1093/aobpla/ply078/5274481 Brennan AC, Hiscock SJ, Abbott RJ (2019) Completing the hybridization triangle: the inheritance of genetic incompatibilities during homoploid hybrid speciation in ragworts (''Senecio''). ''AoB Plants'' 11(1): ply078.]
[https://www.biorxiv.org/content/10.1101/692673v1 Melo MC, James ME, Roda F, Bernal-Franco D, Wilkinson MJ, Liu H-L, Walter GM, Ortiz-Barrientos D (2019) Evidence for mutation-order speciation between convergent ecotypes. ''BioRxiv'', https://doi.org/10.1101/692673.]
[https://onlinelibrary.wiley.com/doi/10.1002/ece3.5263 Richards TJ, Ortiz-Barrientos D, McGuigan K (2019) Natural selection drives leaf divergence in experimental populations of ''Senecio lautus'' under natural conditions. ''Ecology and Evolution'' 9: 6959-6967.]
[https://www.biorxiv.org/content/10.1101/520809v2 Walter GM, Richards T, Wilkinson MJ, Aguirre D, Blows MW, Ortiz-Barrientos D (2019) Connecting micro and macroevolution using genetic incompatibilities and natural selection on additive genetic variance. ''BioRxiv'', doi: https://doi.org/10.1101/520809.] 
*'''2018'''
[https://www.tandfonline.com/doi/full/10.1080/17550874.2018.1496366 Abbott RJ, Comes HP, Goodwin ZA, Brennan AC (2018) Hybridisation and detection of a hybrid zone between mesic and desert ragworts (''Senecio'') across an aridity gradient in the eastern Mediterranean. ''Plant Ecology & Diversity'' 11: 267-281.]
[https://esajournals.onlinelibrary.wiley.com/doi/10.1002/ecy.2234 Walter GM, Wilkinson MJ, Aguirre JD, Blows MW, Ortiz-Barrientos D. (2018) Environmentally induced developmental costs underlie fitness tradeoffs. ''Ecology'' 99: 1391-1401.]
[http://www.ingentaconnect.com/contentone/iapt/tax/2018/00000067/00000001/art00010 Lieu C-S, Memory A, Ortiz-Barrientos D, Thompson IR, de Lange PJ, Pelser PB (2018) The delimitation and evolutionary history of the Australasian Lautusoid group of ''Senecio'' (Asteraceae; Senecioneae). ''Taxon'' 67: 130-148.]
[https://www.journals.uchicago.edu/doi/abs/10.1086/696123 Walter GM, Aguirre D, Blows MW, & Ortiz-Barrientos D. (2018) Evolution of genetic variance during adaptive radiation. ''American Naturalist'' 191: E108-E128.]
*'''2017'''
[http://www.sciencedirect.com/science/article/pii/S1433831916301585 Bog M, Ehrnsberger HF, Elmer M, Bassler C, Oberprieler C (2017) Do differences in herbivore resistance contribute to elevational niches of species and hybrids in the central European ''Senecio nemorensis'' (Compositae, Senecioneae) syngameon? ''Perspectives in Plant Ecology, Evolution and Systematics'' 24: 61-71.]
[https://link.springer.com/article/10.1007/s10682-017-9890-7 Bog M, Bassler C, Oberprieler C (2017) Lost in the hybridisation vortex: high-elevation ''Senecio hercynicus'' (Compositae, Senecioneae) is genetically swamped by its congener ''S. ovatus'' in the Bavarian Forest National Park (SE Germany). ''Evolutionary Ecology''  31: 401-420.]
[https://link.springer.com/article/10.1007%2Fs00049-017-0241-5 Bog M, Elmer M, Doppel M, Ehrnsberger HF, Heilmann J, Oberprieler C (2017) Phytochemical investigations and food-choice experiments with two mollusc species in three central European ''Senecio'' L. (Asteraceae, Senecioneae) species and their hybrids. ''Chemoecology'' 27: 155-169.]
[http://www.tandfonline.com/doi/full/10.1080/17550874.2017.1400127 Comes HP, Coleman M, Abbott RJ (2017) Recurrent origin of peripheral, coastal (sub)species in Mediterranean ''Senecio'' (Asteraceae). ''Plant Ecology & Diversity'' 10: 253-271.]
[https://peerj.com/articles/3630/ Dormontt EE, Prentis PJ, Gardner MG, Lowe AJ (2017) Occasional hybridization between a native and invasive ''Senecio'' species in Australia is unlikely to contribute to invasive success. ''Peer J'' 5: e3630.]
[https://onlinelibrary.wiley.com/doi/full/10.1002/ece3.3206 Dušková E, Sklenář P, Kolář F, Vásquez DLA, Romoleroux K, Fér T, Marhold K (2017) Growth form evolution and hybridization in ''Senecio'' (Asteraceae) from the high equatorial Andes. ''Ecology and Evolution'' 7: 6455-6468.]
[http://onlinelibrary.wiley.com/doi/10.1111/jbi.12837/abstract Kandziora M, Kadereit JW, Gehrke B (2017) Dual colonization of the Palearctic from different regions in the Afrotropics by ''Senecio''. ''Journal of Biogeography'' 44: 147-157.]
[https://onlinelibrary.wiley.com/doi/abs/10.1111/mec.14150 Roda F,  Walter GM, Nipper R, Ortiz-Barrientos D. (2017). Genomic clustering of adaptive loci during parallel evolution of an Australian wildflower. ''Molecular Ecology'' 26: 3687–3699.]


*'''2016'''
*'''2016'''


[http://jhered.oxfordjournals.org/content/early/2016/05/23/jhered.esw035.abstract Alexander-Webber D, Abbott RJ, Chapman MA (2016) Morphological convergence between an allopolyploid and one of its parental species correlates with biased gene expression and DNA loss. ''Journal of Heredity'' 107: 445-454.]
[http://jhered.oxfordjournals.org/content/early/2016/05/23/jhered.esw035.abstract Alexander-Webber D, Abbott RJ, Chapman MA (2016) Morphological convergence between an allopolyploid and one of its parental species correlates with biased gene expression and DNA loss. ''Journal of Heredity'' 107: 445-454.]
Line 115: Line 171:
[http://onlinelibrary.wiley.com/doi/10.1111/jeb.12765/abstract Chapman MA, Hiscock SJ, Filatov DA (2016) The genomic basis of morphological divergence and reproductive isolation driven by ecological speciation in ''Senecio'' (Asteraceae. ''Journal of Evolutionary Biology'' 29: 98-113.]
[http://onlinelibrary.wiley.com/doi/10.1111/jeb.12765/abstract Chapman MA, Hiscock SJ, Filatov DA (2016) The genomic basis of morphological divergence and reproductive isolation driven by ecological speciation in ''Senecio'' (Asteraceae. ''Journal of Evolutionary Biology'' 29: 98-113.]


[http://onlinelibrary.wiley.com/doi/10.1111/mec.13618/pdf Filatov DA, Osborne OG, Papadopoulos AST (2016) Demographic history of speciation in a ''Senecio'' altitudinal hybrid zone on Mt. Etna. ''Molecular Ecology'' 25: 2467-2481 DOI: 10.1111/mec.13618]
[http://onlinelibrary.wiley.com/doi/10.1111/mec.13618/pdf Filatov DA, Osborne OG, Papadopoulos AST (2016) Demographic history of speciation in a ''Senecio'' altitudinal hybrid zone on Mt. Etna. ''Molecular Ecology'' 25: 2467-2481.]
 
[https://doi.org/10.1104/pp.16.00395 Garces HMP, Spencer VMR, Kim M (2016) Control of floret symmetry by ''RAY3'', ''SvDIV1B'', and ''SvRAD'' in the capitulum of ''Senecio vulgaris''. ''Plant Physiology'' 171: 2055-2068.]


[http://dx.doi.org/10.1080/17550874.2016.1181116 Irwin JA, Ashton PA, Bretagnolle F, Abbott RJ (2016) The long and the short of it: long-styled florets are associated with higher outcrossing rate in ''Senecio vulgaris'' and result from delayed self-pollen germination. ''Plant Ecology & Diversity'' 9: 159-165.]
[http://dx.doi.org/10.1080/17550874.2016.1181116 Irwin JA, Ashton PA, Bretagnolle F, Abbott RJ (2016) The long and the short of it: long-styled florets are associated with higher outcrossing rate in ''Senecio vulgaris'' and result from delayed self-pollen germination. ''Plant Ecology & Diversity'' 9: 159-165.]


[http://amjbot.org/content/early/2016/08/23/ajb.1600210.abstract Kandziora M, Kadereit JW, Gehrke B (2016) Frequent colonization and little in situ speciation in ''Senecio'' in the tropical alpine-like islands of eastern Africa. ''American Journal of Botany'' (Advance access) DOI: 10.3732/ajb.1600210]
[http://amjbot.org/content/early/2016/08/23/ajb.1600210.abstract Kandziora M, Kadereit JW, Gehrke B (2016) Frequent colonization and little ''in situ'' speciation in ''Senecio'' in the tropical alpine-like islands of eastern Africa. ''American Journal of Botany'' 103: 1483-1498.]
 
[http://www.tandfonline.com/doi/full/10.1080/17550874.2016.1244576 Love J, Graham SW, Irwin JA, Ashton PA, Bretagnolle F, Abbott RJ (2016) Self-pollination, style length development and seed set in self-compatible Asteraceae: evidence from ''Senecio vulgaris'' L. ''Plant Ecology & Diversity'' 9: 371-379.]
 
[http://www.sciencedirect.com/science/article/pii/S036725301630024X Oberprieler C, Bog M, Berchtold B (2016) Herbivory and fitness components in an hybrid swarm of ''Senecio hercynicus'' and ''S. ovatus'' (Compositae, Senecioneae). ''Flora'' 220: 117-124.]


[http://gbe.oxfordjournals.org/content/8/4/1038.abstract?sid=8cdf69da-aac1-4a29-ba1c-859b84841 Osborne O.G., Chapman M., Nevado B. and Filatov D.A. (2016) Maintenance of species boundaries despite ongoing gene flow in ragworts. ''Genome Biology & Evolution'' 8: 1038-1047.]
[http://gbe.oxfordjournals.org/content/8/4/1038.abstract?sid=8cdf69da-aac1-4a29-ba1c-859b84841 Osborne O.G., Chapman M., Nevado B. and Filatov D.A. (2016) Maintenance of species boundaries despite ongoing gene flow in ragworts. ''Genome Biology & Evolution'' 8: 1038-1047.]
Line 125: Line 187:
[http://onlinelibrary.wiley.com/doi/10.1111/evo.12936/abstract Richards TJ, Ortiz-Barrientos D (2016) Immigrant inviability produces a strong barrier to gene flow between parapatric ecotypes of ''Senecio lautus''. ''Evolution'' 70: 1239-1248.]
[http://onlinelibrary.wiley.com/doi/10.1111/evo.12936/abstract Richards TJ, Ortiz-Barrientos D (2016) Immigrant inviability produces a strong barrier to gene flow between parapatric ecotypes of ''Senecio lautus''. ''Evolution'' 70: 1239-1248.]


[http://onlinelibrary.wiley.com/doi/10.1111/evo.12994/abstract Richards TJ, Walter GM, McGuigan K, Ortiz-Barrientos D (2016) Divergent natural selection drives the evolution of extrinsic post-zygotic isolation in an Australian wildflower. ''Evolution'' DOI: 10.1111/evo.12994]
[http://onlinelibrary.wiley.com/doi/10.1111/evo.12994/abstract Richards TJ, Walter GM, McGuigan K, Ortiz-Barrientos D (2016) Divergent natural selection drives the evolution of extrinsic post-zygotic isolation in an Australian wildflower. ''Evolution'' 70: 1993-2003]


[http://onlinelibrary.wiley.com/doi/10.1111/evo.13009/abstract Walter GM, Wilkinson MJ, James ME, Richards TJ, Aguirre JD, Ortiz-Barrientos D (2016) Diversification across a heterogeneous landscape. ''Evolution'' doi: 10.1111/evo.13009]
[http://aob.oxfordjournals.org/content/117/2/269.abstract Sonnleitner M, Hulber K, Flatscher R, Garcia PE, Winkler M, Suda J, Schoenswetter P, Schneeweiss GM (2016) Ecological differentiation of diploid and polyploid cytotypes of ''Senecio carniolicus sensu lato'' (Asteraceae) is stronger in areas of sympatry. ''Annals of Botany'' 117: 269-276.]
 
[http://onlinelibrary.wiley.com/doi/10.1111/evo.13009/abstract Walter GM, Wilkinson MJ, James ME, Richards TJ, Aguirre JD, Ortiz-Barrientos D (2016) Diversification across a heterogeneous landscape. ''Evolution'' 70: 1979-1992]


*'''2015'''
*'''2015'''


[http://www.tandfonline.com/doi/full/10.1080/17550874.2015.1028113#.VYPtR6a2j9I Lowe AJ, Abbott RJ (2015) Hybrid swarms: catalysts for multiple evolutionary events in British and Irish ''Senecio''. ''Plant Ecology & Diversity'' 8: 449-463.]
[http://www.tandfonline.com/doi/full/10.1080/17550874.2015.1028113#.VYPtR6a2j9I Lowe AJ, Abbott RJ (2015) Hybrid swarms: catalysts for multiple evolutionary events in British and Irish ''Senecio''. ''Plant Ecology & Diversity'' 8: 449-463.]
[http://www.sciencedirect.com/science/article/pii/S0367253014001327 Oberprieler C, Heine G, Bassler C (2015) Can divergent selection save the rare ''Senecio hercynicus'' from genetic swamping by its spreading congener ''S. ovatus'' (Compositae, Senecioneae)? ''Flora'' 210: 47-59.]


Wilcox M (2015) Should ''Senecio vulgaris'' ssp. ''denticulatus'' be a species? ''BSBI News'' (Botanical Society of Britain & Ireland) 128: 27-29.
Wilcox M (2015) Should ''Senecio vulgaris'' ssp. ''denticulatus'' be a species? ''BSBI News'' (Botanical Society of Britain & Ireland) 128: 27-29.
Line 138: Line 203:
*'''2014'''
*'''2014'''


[http://www.nature.com/hdy/journal/vaop/ncurrent/abs/hdy201414a.html Brennan AC, Hiscock SJ, Abbott RJ (2014) Interspecific crossing and genetic mapping reveal intrinsic genomic incompatibility between two ''Senecio'' species that form a hybrid zone on Mount Etna, Sicily. ''Heredity'' 113: 195-204. DOI: 10.1038/hdy.2014.14]
[http://www.nature.com/hdy/journal/vaop/ncurrent/abs/hdy201414a.html Brennan AC, Hiscock SJ, Abbott RJ (2014) Interspecific crossing and genetic mapping reveal intrinsic genomic incompatibility between two ''Senecio'' species that form a hybrid zone on Mount Etna, Sicily. ''Heredity'' 113: 195-204.]


[http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0106874 Dormontt EE, Gardner MG, Breed MF, Rodger JG, Prentis PP, Lowe AJ (2014) Genetic bottlenecks in time and space: reconstructing invasions from contemporary and historical collections. ''PLoS One'' 9(9): e106874. DOI:10.1371/journal.pone.0106874]  
[http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0106874 Dormontt EE, Gardner MG, Breed MF, Rodger JG, Prentis PP, Lowe AJ (2014) Genetic bottlenecks in time and space: reconstructing invasions from contemporary and historical collections. ''PLoS One'' 9: e106874.]  


[http://onlinelibrary.wiley.com/doi/10.1111/nph.12779/abstract Melo MC, Grealy A, Brittain B, Walter GM, Ortiz-Barrientos D (2014) Strong extrinsic reproductive isolation between parapatric populations of an Australian groundsel. ''New Phytologist'' 203: 323-334. DOI: 10.1111/nph.12779.]
[http://onlinelibrary.wiley.com/doi/10.1111/nph.12779/abstract Melo MC, Grealy A, Brittain B, Walter GM, Ortiz-Barrientos D (2014) Strong extrinsic reproductive isolation between parapatric populations of an Australian groundsel. ''New Phytologist'' 203: 323-334. DOI: 10.1111/nph.12779.]
Line 152: Line 217:
[http://www.ingentaconnect.com/content/iapt/tax/2013/00000062/00000001/art00011 Calvo J, Álvarez I, Aedo C, Pelser PB. 2013. A phylogenetic analysis and new delimitation of ''Senecio'' sect. ''Crociseris'' (Compositae: Senecioneae), with evidence of intergeneric hybridization. ''Taxon'' 62: 127-140.]
[http://www.ingentaconnect.com/content/iapt/tax/2013/00000062/00000001/art00011 Calvo J, Álvarez I, Aedo C, Pelser PB. 2013. A phylogenetic analysis and new delimitation of ''Senecio'' sect. ''Crociseris'' (Compositae: Senecioneae), with evidence of intergeneric hybridization. ''Taxon'' 62: 127-140.]


[http://mbe.oxfordjournals.org/content/early/2013/09/26/molbev.mst168.abstract.html?papetoc Chapman MA, Hiscock SJ, Filatov DA (2013) Genomic divergence during speciation driven by adaptation to altitude. ''Molecular Biology & Evolution'' (early view).]
[http://mbe.oxfordjournals.org/content/early/2013/09/26/molbev.mst168.abstract.html?papetoc Chapman MA, Hiscock SJ, Filatov DA (2013) Genomic divergence during speciation driven by adaptation to altitude. ''Molecular Biology & Evolution'' 30: 2553-2567.]


[http://link.springer.com/article/10.1007/s10886-013-0257-4 Cheng DD, van der Meijden E, Mulder PPJ Vrieling K Klinkhamer, PGL (2013) Pyrrolizidine Alkaloid Composition Influences Cinnabar Moth Oviposition Preferences in ''Jacobaea'' Hybrids. ''Journal of Chemical Ecology'' 39: 430-437.]
[http://link.springer.com/article/10.1007/s10886-013-0257-4 Cheng DD, van der Meijden E, Mulder PPJ Vrieling K Klinkhamer, PGL (2013) Pyrrolizidine Alkaloid Composition Influences Cinnabar Moth Oviposition Preferences in ''Jacobaea'' Hybrids. ''Journal of Chemical Ecology'' 39: 430-437.]
[https://as-botanicalstudies.springeropen.com/articles/10.1186/1999-3110-54-20 Lopez MG, Xifreda CC, Poggio L, Wulff AF (2013) Deep cytogenetics analysis reveals meiotic recombination depletion in species of ''Senecio'' (Asteraceae). ''Botanical Studies'' 54: 20 (11 pages).]


[http://onlinelibrary.wiley.com/doi/10.1111/evo.12157/abstract Muir G, Osborne OG, Sarasa J, Hiscock SJ, Filatov DA (2013) Recent ecological selection on regulatory divergence is shaping clinal variation in ''Senecio'' on Mount Etna. ''Evolution'' 67: 3032-3042.]
[http://onlinelibrary.wiley.com/doi/10.1111/evo.12157/abstract Muir G, Osborne OG, Sarasa J, Hiscock SJ, Filatov DA (2013) Recent ecological selection on regulatory divergence is shaping clinal variation in ''Senecio'' on Mount Etna. ''Evolution'' 67: 3032-3042.]
Line 163: Line 230:


[http://onlinelibrary.wiley.com/doi/10.1111/evo.12136/abstract Roda F, Liu H-L, Wilkinson MJ, Walter GM, James ME, Bernal DM, Melo MC, Lowe A, Rieseberg LH, Prentis P, Ortiz-Barrientos D (2013) Convergence and divergence during the adaptation to similar environments by an Australian groundsel. ''Evolution'' 67: 2515-2529.]
[http://onlinelibrary.wiley.com/doi/10.1111/evo.12136/abstract Roda F, Liu H-L, Wilkinson MJ, Walter GM, James ME, Bernal DM, Melo MC, Lowe A, Rieseberg LH, Prentis P, Ortiz-Barrientos D (2013) Convergence and divergence during the adaptation to similar environments by an Australian groundsel. ''Evolution'' 67: 2515-2529.]
[http://journals.plos.org/plosone/article?id=10.1371%2Fjournal.pone.0078959 Sonnleitner M, Weiss B, Flatscher R, Escobar Garcıa P, Suda J, Krejcikova J, Schneeweiss GM, Winkler M, Schoenswetter P, Hulber K (2013) Parental ploidy strongly affects offspring fitness in heteroploid crosses among three cytotypes of autopolyploid ''Jacobaea carniolica'' (Asteraceae). ''PLoS ONE'' 8: e78959.]


*'''2012'''
*'''2012'''
Line 197: Line 266:


Langel D, Ober D, Pelser PB  (2011) The evolution of pyrrolizidine alkaloid biosynthesis and diversity in the Senecioneae. ''Phytochemistry Reviews'' 10: 3-74.
Langel D, Ober D, Pelser PB  (2011) The evolution of pyrrolizidine alkaloid biosynthesis and diversity in the Senecioneae. ''Phytochemistry Reviews'' 10: 3-74.
[http://link.springer.com/article/10.1007/s00606-011-0431-5 Oberprieler C, Hartl S, Schauer K, Meister J, Heilmann K (2011) Morphological, phytochemical and genetic variation in mixed stands and a hybrid swarm of ''Senecio germanicus'' and ''S. ovatus'' (Compositae, Senecioneae). ''Plant Systematics & Evolution'' 293: 177-191.]


*'''2010'''
*'''2010'''
Line 211: Line 282:


Kirk H, Vrieling K, Van Der Meijden E, Klinkhamer PGL (2010) Species by environment interactions affect pyrrolizidine alkaloid expression in ''Senecio jacobaea'', ''Senecio aquaticus'', and their hybrids. J. Chemical Ecology 36: 378-387.  
Kirk H, Vrieling K, Van Der Meijden E, Klinkhamer PGL (2010) Species by environment interactions affect pyrrolizidine alkaloid expression in ''Senecio jacobaea'', ''Senecio aquaticus'', and their hybrids. J. Chemical Ecology 36: 378-387.  
Langel D, Ober D, Pelser P (2010) The evolution of pyrrolizidine alkaloid biosynthesis and the diversity in the Senecioneae.
''Phytochemistry Reviews'' 10: 3-74


Pelser PB, Tepe EJ, Kennedy AH, Watson LE (2010) The fate of ''Robinsonia'' (Asteraceae): sunk in ''Senecio'', but still monophyletic? ''Phytotaxa'' 5: 31-46.
Pelser PB, Tepe EJ, Kennedy AH, Watson LE (2010) The fate of ''Robinsonia'' (Asteraceae): sunk in ''Senecio'', but still monophyletic? ''Phytotaxa'' 5: 31-46.


Prentis PJ, Woolfit M, Thomas-Hall SR, Ortiz-Barrientos D, Pavasovic A, Lowe AJ, Schenk PM (2010) Massively parallel sequencing and analysis of expressed sequence tags in a successful invasive plant. ''Annals of Botany'' 106: 1009-1017.
Prentis PJ, Woolfit M, Thomas-Hall SR, Ortiz-Barrientos D, Pavasovic A, Lowe AJ, Schenk PM (2010) Massively parallel sequencing and analysis of expressed sequence tags in a successful invasive plant. ''Annals of Botany'' 106: 1009-1017.
[http://link.springer.com/article/10.1007/s00606-010-0295-0 Oberprieler C, Barth A, Schwarz S, HeilmannJ (2010)Morphological and phytochemical variation, genetic structure and phenology in an introgressive hybrid swarm of ''Senecio hercynicus'' and ''S. ovatus'' (Compositae, Senecioneae). ''Plant Systematics & Evolution'' 286: 153-166.]
[http://aob.oxfordjournals.org/content/106/6/967.abstract Sonnleitner M, Flatscher R, Escobar Garcıa P, Rauchova J, Suda J, Schneeweiss GM, Hulber K, Schoenswetter P (2010) Distribution and habitat segregation on different spatial scales among diploid, tetraploid and hexaploid cytotypes of ''Senecio carniolicus''(Asteraceae) in the Eastern Alps. ''Annals of Botany'' 106: 967–977.]


Rapo C, Muller-Scharer H, Vrieling K, Schaffner U (2010) Is there rapid evolutionary response in introduced populations of tansy ragwort, Jacobaea vulgaris, when exposed to biological control? ''Evolutionary Ecology'' 24: 1081-1099
Rapo C, Muller-Scharer H, Vrieling K, Schaffner U (2010) Is there rapid evolutionary response in introduced populations of tansy ragwort, Jacobaea vulgaris, when exposed to biological control? ''Evolutionary Ecology'' 24: 1081-1099

Latest revision as of 00:29, 11 June 2023

The Senecio Research Network

Become a member today.

Background

Ecotypic divergence in Senecio lautus - Field experiment on Stradbroke Island, Queensland, Australia.
  • The plant genus Senecio comprises approximately 1,000 species and is increasingly used in research on plant adaptation and evolution. The genus includes leaf, stem and tuber succulents, annuals, perennials, aquatics, climbers, shrubs and small trees. Some species produce natural biocides (especially alkaloids) to deter or even kill animals that would eat them, and several species are notable weeds of agriculture and horticulture (e.g. Senecio vulgaris), while others are successful invaders of pastures, wasteground and roadsides (e.g. S. inaequidens, S. madagascariensis and S. squalidus).
  • Some Senecio species are self-compatible, whereas others exhibit strong self-incompatibility. Interspecific hybridization is common and there are notable examples of recent introgression and hybrid speciation in the genus resulting in the origin of new introgressant taxa, and allopolyploid and homoploid hybrid species. Ecotypic divergence is also marked in some species (e.g. S. lautus and S. vulgaris), raising questions on how new species originate via ecological speciation.
  • Because Senecio species are now being used to investigate a wide range of questions in ecology and evolution in different labs around the world, several labs thought it desirable to establish a network to enhance collaborative research and to access and exchange valuable information and resources. This led to the first meeting of the network in August 2010 (Programme & Abstracts) and to the establishment of this website.

People

Flower head variation in Senecio vulgaris. In the first genetic study on Senecio, Trow (1912) showed that presence/absence of ray florets in flower heads of S. vulgaris was controlled by a single genetic locus. Almost a century later, Kim et al. (2008) showed that this locus comprised at least two cycloidea-like, regulatory genes, RAY 1 and RAY2. The radiate morph originated within the last 200 years in Britain after introgression of alleles at the RAY locus from the radiate invasive species, S. squalidus, into the formerly non-radiate S. vulgaris. Presence of ray florets increases pollinator attraction and outcrossing rate in S. vulgaris.
Labs


Grad Students



Plant Resources

Senecio eboracensis
Lendal Bridge site, York, where S. eboracensis once grew
  • Senecio eboracensis a new allotetraploid species discovered in York in 1979 is now extinct in the wild. Seed of this species is stored in Kew's Millenium Seed Bank. Enquiries should be directed to the UK Collections Coordinator, Royal Botanic Gardens Kew, Millenium Seed Bank, Wakehurst Place, Ardingly, West Sussex RH17 6TN.

Genome Resources

  • SenecioDB is an online database curated at the University of Bristol which currently hosts in excess of 11,000 ESTs from floral and leaf tissue of five Senecio taxa.
  • The draft genome sequence of Senecio squalidus is being produced using several different sequencing approaches through a collaboration between the Hiscock (Bristol) and Filatov (Oxford) labs. More details to appear soon.
  • Genetic maps of S. squalidus and its parent species, S. aethnensis and S. chrysanthemifolius, are being produced by Adrian Brennan (Edinburgh) and Richard Abbott (St Andrews) using SSR and AFLP markers. Work to expand and improve these maps is being carried out by Dmitri Filatov (Oxford) and Mark Chapman (Southampton).
  • Genetic maps of Senecio jacobaea and S. aquaticus (now Jacobaea vulgaris and J. aquaticus, respectivey,) are being produced by the Klinkhamer and Vrieling labs (Leiden University) from a cross between these two species.

Network Meetings

The First Senecio Research Network meeting was held at St Andrews University, UK, on 20 August 2010. Programme & Abstracts. You can view pdfs of presentations given by speakers at the meeting by clicking on their names in the following list:


Useful Links





Recent Publications

Senecio as a model system for integrating studies of genotype, phenotype and fitness. Walter et al. 2020. Tansley Review. New Phytol. 226: 326-344.
  • 2023

Abbott RJ (2023) Edaphic ecotypic divergence in Senecio vulgaris and the evolutionary potential of predominantly self-fertilising species. Plant Ecology & Diversity doi.org/10.1080/17550874.2023.2209786.

Walter GM, Clark J, Terranova D, Cozzolino S, Cristaudo A, Hiscock SJ, Bridle J (2023) Hidden genetic variation in plasticity provides the potential for rapid adaptation to novel environments. New Phytologist 239: 374-387.

Wong ELY, Nevado B, Hiscock SJ, Filatov DA (2023) Rapid evolution of hybrid breakdown following recent divergence with gene flow in Senecio species on Mount Etna, Sicily. Heredity 130: 40-52.

  • 2022

Milton JJ, Affenzeller M, Abbott RJ, Comes HP (2022) Plant speciation in the Namib Desert: potential origin of a widespread derivative species from a narrow endemic. Plant Ecology & Diversity 15:329-353

Walter GM, Clark J, Cristaudo A, Terranova D, Nevo B, Catara S, Paunov M, Velikova V, Filatov D, Cozzolino S, Hiscock SJ, Bridle JR (2022) Adaptive divergence generates distinct plastic responses in two closely related Senecio species. Evolution 76: 1229–1245.

Wong ELY, Hiscock SJ, Filatov DA (2022) The role of interspecific hybridisation in adaptation and speciation: Insights from studies in Senecio. Frontiers in Plant Science 13: 907363.

  • 2021

James ME, Arenas-Castro H, Groh JS, Engelstädter J, Ortiz-Barrientos D (2021). Highly replicated evolution of parapatric ecotypes. Molecular Biology & Evolution 38:4805-4821

James ME, Wilkinson MJ, Bernal DM, Liu H, North H, Engelstädter J, Ortiz-Barrientos D (2021). Phenotypic and genotypic parallel evolution in parapatric ecotypes of Senecio. Evolution 75: 3115-3131

Walter GM, du Plessis S, Terranova D, la Spina E, Majorana MG, Pepe G, Clark J, Cozzolino S, Cristaudo A, Hiscock SJ, Bridle JR (2021) Adaptive maternal effects in early life history traits help to maintain ecological resilience in novel environments for two contrasting Senecio species. BioRxiv https://doi.org/10.1101/2021.02.04.429835

Walter GM, Terranova D, Clark J, Cozzolino S,, Cristaudo A, Hiscock SJ, Bridle JR (2021) Plasticity in novel environments induces larger changes in genetic variance than adaptive divergence. BioRxiv https://doi.org/10.1101/2021.02.08.430333

Wilkinson MC, Roda F, Walter GM, James ME, Nipper R, Walsh J, Allen SL, North HL, Beveridge CB, Ortiz-Barrientos D. (2021) Adaptive divergence in shoot gravitropism creates hybrid sterility in an Australian wildflower. PNAS 118 (47) e2004901118

  • 2020

Nevado B, Harris SA, Beaumont MA, Hiscock SJ (2020) Rapid homoploid hybrid speciation in British gardens: The origin of Oxford ragwort (Senecio squalidus). Molecular Ecology 29: 4221-4233

Walter GM, Richards TJ, Wilkinson MJ, Blows MW, Aguirre JD, Ortiz-Barrientos D (2020) Loss of ecologically important genetic variation in late generation hybrids reveals links between adaptation and speciation. Evolution Letters 4: 302-316.

Walter G, Abbott RJ, Brennan AC, Bridle J, Chapman MA, Clark J, Filatov D, Nevado B, Ortiz-Barrientos D, Hiscock SJ (2020) Senecio as a model system for integrating studies of genotype, phenotype and fitness. New Phytologist 226: 326-344.

Walter G, Clark J, Cristaudo A, Nevado B, Catara S, Paunov M, Velikova V, Filatov D, Cozzolino S, Hiscock SJ, Bridle JR (2020) Adaptation to contrasting habitats underlies distinct plastic responses to environmental variation in two closely related Senecio species. BioRxivdoi: http://dx.doi.org/10.1101/2020.01.24.918201.

Wong ELY, Nevado B, Osborne OG, Papadopulos AST, Bridle JR, Hiscock SJ, Filatov DA (2020) Strong divergent selection at multiple loci in two closely related species of ragworts adapted to high and low elevations on Mount Etna. Molecular Ecology 29: 394-412.

  • 2019

Brennan AC, Hiscock SJ, Abbott RJ (2019) Completing the hybridization triangle: the inheritance of genetic incompatibilities during homoploid hybrid speciation in ragworts (Senecio). AoB Plants 11(1): ply078.

Melo MC, James ME, Roda F, Bernal-Franco D, Wilkinson MJ, Liu H-L, Walter GM, Ortiz-Barrientos D (2019) Evidence for mutation-order speciation between convergent ecotypes. BioRxiv, https://doi.org/10.1101/692673.

Richards TJ, Ortiz-Barrientos D, McGuigan K (2019) Natural selection drives leaf divergence in experimental populations of Senecio lautus under natural conditions. Ecology and Evolution 9: 6959-6967.

Walter GM, Richards T, Wilkinson MJ, Aguirre D, Blows MW, Ortiz-Barrientos D (2019) Connecting micro and macroevolution using genetic incompatibilities and natural selection on additive genetic variance. BioRxiv, doi: https://doi.org/10.1101/520809.

  • 2018

Abbott RJ, Comes HP, Goodwin ZA, Brennan AC (2018) Hybridisation and detection of a hybrid zone between mesic and desert ragworts (Senecio) across an aridity gradient in the eastern Mediterranean. Plant Ecology & Diversity 11: 267-281.

Walter GM, Wilkinson MJ, Aguirre JD, Blows MW, Ortiz-Barrientos D. (2018) Environmentally induced developmental costs underlie fitness tradeoffs. Ecology 99: 1391-1401.

Lieu C-S, Memory A, Ortiz-Barrientos D, Thompson IR, de Lange PJ, Pelser PB (2018) The delimitation and evolutionary history of the Australasian Lautusoid group of Senecio (Asteraceae; Senecioneae). Taxon 67: 130-148.

Walter GM, Aguirre D, Blows MW, & Ortiz-Barrientos D. (2018) Evolution of genetic variance during adaptive radiation. American Naturalist 191: E108-E128.

  • 2017

Bog M, Ehrnsberger HF, Elmer M, Bassler C, Oberprieler C (2017) Do differences in herbivore resistance contribute to elevational niches of species and hybrids in the central European Senecio nemorensis (Compositae, Senecioneae) syngameon? Perspectives in Plant Ecology, Evolution and Systematics 24: 61-71.

Bog M, Bassler C, Oberprieler C (2017) Lost in the hybridisation vortex: high-elevation Senecio hercynicus (Compositae, Senecioneae) is genetically swamped by its congener S. ovatus in the Bavarian Forest National Park (SE Germany). Evolutionary Ecology 31: 401-420.

Bog M, Elmer M, Doppel M, Ehrnsberger HF, Heilmann J, Oberprieler C (2017) Phytochemical investigations and food-choice experiments with two mollusc species in three central European Senecio L. (Asteraceae, Senecioneae) species and their hybrids. Chemoecology 27: 155-169.

Comes HP, Coleman M, Abbott RJ (2017) Recurrent origin of peripheral, coastal (sub)species in Mediterranean Senecio (Asteraceae). Plant Ecology & Diversity 10: 253-271.

Dormontt EE, Prentis PJ, Gardner MG, Lowe AJ (2017) Occasional hybridization between a native and invasive Senecio species in Australia is unlikely to contribute to invasive success. Peer J 5: e3630.

Dušková E, Sklenář P, Kolář F, Vásquez DLA, Romoleroux K, Fér T, Marhold K (2017) Growth form evolution and hybridization in Senecio (Asteraceae) from the high equatorial Andes. Ecology and Evolution 7: 6455-6468.

Kandziora M, Kadereit JW, Gehrke B (2017) Dual colonization of the Palearctic from different regions in the Afrotropics by Senecio. Journal of Biogeography 44: 147-157.

Roda F, Walter GM, Nipper R, Ortiz-Barrientos D. (2017). Genomic clustering of adaptive loci during parallel evolution of an Australian wildflower. Molecular Ecology 26: 3687–3699.

  • 2016

Alexander-Webber D, Abbott RJ, Chapman MA (2016) Morphological convergence between an allopolyploid and one of its parental species correlates with biased gene expression and DNA loss. Journal of Heredity 107: 445-454.

Brennan AC, Hiscock SJ, Abbott RJ (2016) Genomic architecture of phenotypic divergence between two hybridizing plant species along an elevational gradient. AoB Plants 8: plw022 doi:10.1093/aobpla/plw022.

Chapman MA, Hiscock SJ, Filatov DA (2016) The genomic basis of morphological divergence and reproductive isolation driven by ecological speciation in Senecio (Asteraceae. Journal of Evolutionary Biology 29: 98-113.

Filatov DA, Osborne OG, Papadopoulos AST (2016) Demographic history of speciation in a Senecio altitudinal hybrid zone on Mt. Etna. Molecular Ecology 25: 2467-2481.

Garces HMP, Spencer VMR, Kim M (2016) Control of floret symmetry by RAY3, SvDIV1B, and SvRAD in the capitulum of Senecio vulgaris. Plant Physiology 171: 2055-2068.

Irwin JA, Ashton PA, Bretagnolle F, Abbott RJ (2016) The long and the short of it: long-styled florets are associated with higher outcrossing rate in Senecio vulgaris and result from delayed self-pollen germination. Plant Ecology & Diversity 9: 159-165.

Kandziora M, Kadereit JW, Gehrke B (2016) Frequent colonization and little in situ speciation in Senecio in the tropical alpine-like islands of eastern Africa. American Journal of Botany 103: 1483-1498.

Love J, Graham SW, Irwin JA, Ashton PA, Bretagnolle F, Abbott RJ (2016) Self-pollination, style length development and seed set in self-compatible Asteraceae: evidence from Senecio vulgaris L. Plant Ecology & Diversity 9: 371-379.

Oberprieler C, Bog M, Berchtold B (2016) Herbivory and fitness components in an hybrid swarm of Senecio hercynicus and S. ovatus (Compositae, Senecioneae). Flora 220: 117-124.

Osborne O.G., Chapman M., Nevado B. and Filatov D.A. (2016) Maintenance of species boundaries despite ongoing gene flow in ragworts. Genome Biology & Evolution 8: 1038-1047.

Richards TJ, Ortiz-Barrientos D (2016) Immigrant inviability produces a strong barrier to gene flow between parapatric ecotypes of Senecio lautus. Evolution 70: 1239-1248.

Richards TJ, Walter GM, McGuigan K, Ortiz-Barrientos D (2016) Divergent natural selection drives the evolution of extrinsic post-zygotic isolation in an Australian wildflower. Evolution 70: 1993-2003

Sonnleitner M, Hulber K, Flatscher R, Garcia PE, Winkler M, Suda J, Schoenswetter P, Schneeweiss GM (2016) Ecological differentiation of diploid and polyploid cytotypes of Senecio carniolicus sensu lato (Asteraceae) is stronger in areas of sympatry. Annals of Botany 117: 269-276.

Walter GM, Wilkinson MJ, James ME, Richards TJ, Aguirre JD, Ortiz-Barrientos D (2016) Diversification across a heterogeneous landscape. Evolution 70: 1979-1992

  • 2015

Lowe AJ, Abbott RJ (2015) Hybrid swarms: catalysts for multiple evolutionary events in British and Irish Senecio. Plant Ecology & Diversity 8: 449-463.

Oberprieler C, Heine G, Bassler C (2015) Can divergent selection save the rare Senecio hercynicus from genetic swamping by its spreading congener S. ovatus (Compositae, Senecioneae)? Flora 210: 47-59.

Wilcox M (2015) Should Senecio vulgaris ssp. denticulatus be a species? BSBI News (Botanical Society of Britain & Ireland) 128: 27-29.

  • 2014

Brennan AC, Hiscock SJ, Abbott RJ (2014) Interspecific crossing and genetic mapping reveal intrinsic genomic incompatibility between two Senecio species that form a hybrid zone on Mount Etna, Sicily. Heredity 113: 195-204.

Dormontt EE, Gardner MG, Breed MF, Rodger JG, Prentis PP, Lowe AJ (2014) Genetic bottlenecks in time and space: reconstructing invasions from contemporary and historical collections. PLoS One 9: e106874.

Melo MC, Grealy A, Brittain B, Walter GM, Ortiz-Barrientos D (2014) Strong extrinsic reproductive isolation between parapatric populations of an Australian groundsel. New Phytologist 203: 323-334. DOI: 10.1111/nph.12779.

Qian G, Ping JJ, Lu J, Zhang Z, Wang L, Xu Dl (2014) Construction of full-length cDNA library and development of EST-derived simple sequence repeat (EST-SSR) markers in Senecio scandens. Biochemical Genetics 52: 494-508

  • 2013

Brennan AC, Harris SA, Hiscock SJ (2013) The population genetics of sporophytic self-incompatibility in three hybridizing Senecio (Asteraceae) species with contrasting population histories. Evolution 67: 1347-1367.

Calvo J, Álvarez I, Aedo C, Pelser PB. 2013. A phylogenetic analysis and new delimitation of Senecio sect. Crociseris (Compositae: Senecioneae), with evidence of intergeneric hybridization. Taxon 62: 127-140.

Chapman MA, Hiscock SJ, Filatov DA (2013) Genomic divergence during speciation driven by adaptation to altitude. Molecular Biology & Evolution 30: 2553-2567.

Cheng DD, van der Meijden E, Mulder PPJ Vrieling K Klinkhamer, PGL (2013) Pyrrolizidine Alkaloid Composition Influences Cinnabar Moth Oviposition Preferences in Jacobaea Hybrids. Journal of Chemical Ecology 39: 430-437.

Lopez MG, Xifreda CC, Poggio L, Wulff AF (2013) Deep cytogenetics analysis reveals meiotic recombination depletion in species of Senecio (Asteraceae). Botanical Studies 54: 20 (11 pages).

Muir G, Osborne OG, Sarasa J, Hiscock SJ, Filatov DA (2013) Recent ecological selection on regulatory divergence is shaping clinal variation in Senecio on Mount Etna. Evolution 67: 3032-3042.

Osborne OG, Batstone TE, Hiscock SJ, Filatov DA (2013) Rapid speciation with gene flow following the formation of Mt. Etna. Genome Biology and Evolution 5: 1704-1715.

Roda F, Ambrose L, Walter GM, Liu H-L, Schaul A, Lowe A, Pelser P, Prentis P, Rieseberg LH, Ortiz-Barrientos D (2013) Genomic evidence for the parallel evolution of coastal forms in the Senecio lautus complex. Molecular Ecology 22: 2941-2952.

Roda F, Liu H-L, Wilkinson MJ, Walter GM, James ME, Bernal DM, Melo MC, Lowe A, Rieseberg LH, Prentis P, Ortiz-Barrientos D (2013) Convergence and divergence during the adaptation to similar environments by an Australian groundsel. Evolution 67: 2515-2529.

Sonnleitner M, Weiss B, Flatscher R, Escobar Garcıa P, Suda J, Krejcikova J, Schneeweiss GM, Winkler M, Schoenswetter P, Hulber K (2013) Parental ploidy strongly affects offspring fitness in heteroploid crosses among three cytotypes of autopolyploid Jacobaea carniolica (Asteraceae). PLoS ONE 8: e78959.

  • 2012

Abbott RJ, Rieseberg LH (2012) Hybrid Speciation. Encyclopedia of Life Sciences (eLS) John Wiley Ltd, Chichester.

Brennan AC, Barker D, Hiscock SJ, Abbott RJ (2012) Molecular genetic and quantitative trait divergence associated with recent homoploid hybrid speciation: a study of Senecio squalidus (Asteraceae). Heredity 108: 87-95.

Hegarty MJ, Abbott RJ, Hiscock SJ (2012) Allopolyploid speciation in action: origin and evolution of Senecio cambrensis. In: Soltis PS, Soltis DE (Eds.) Polyploidy and Genome Evolution, pp. 245-270. Springer-Verlag, Berlin Heidelberg.

Kirk H, Vrieling K, Pelser PB, Schaffner U (2012) Can plant resistance to specialist herbivores be explained by plant chemistry or resource use strategy? Oecologia 168: 1043-1055.

Kirk H, Cheng DD, Choi YH, Vrieling K, Klinkhamer P (2012) Transgressive segregation of primary and secondary metabolites in F-2 hybrids between Jacobaea aquatica and J. vulgaris. Metabolomics 8: 211-219.

Pelser PB, Abbott RJ, Comes HP, Milton JJ, Moeller M, Looseley ME, Cron GV, Barcelona JF, Kennedy AH, Watson LE, Barone R, Hernandez F, Kadereit JW (2012) The ghost of an invasion past: colonization and extinction revealed by historical hybridization in Senecio. Molecular Ecology 12: 369-387.

Ross RIC, Agren JA, Pannell JR (2012) Exogenous selection shapes germination behaviour and seedling traits of populations at different altitudes in a Senecio hybrid zone. Annals of Botany 110: 1439-1447.

  • 2011

Allen AM, Thorogood, CJ, Hegarty MJ, Lexer C, Hiscock SJ (2011) Pollen-pistil interactions and self-incompatibility in the Asteraceae: new insights from studies of Senecio squalidus (Oxford ragwort). Annals of Botany 108: 687-698.

Brennan AC, Tabah DA, Harris SA, Hiscock SJ (2011) Sporophytic self-incompatibility in Senecio squalidus (Asteraceae): S allele dominance interactions and modifiers of cross-compatibility and selfing rates. Heredity 106: 113-123.

Cheng DD, Vrieling K, Klinkhamer PGL (2011) The effect of hybridization on secondary metabolites and herbivore resistance: implications for the evolution of chemical diversity in plants. Phytochemistry Reviews 10: 107-117.

Cheng DD, Kirk H, Mulder PPJ, Vrieling K, Klinkhamer PGL (2011) Pyrrolizidine alkaloid variation in shoots and roots of segregating hybrids between Jacobaea vulgaris and Jacobaea aquatica. New Phytologist 192: 1010-1023.

Doorduin L, Gravendeel B, Lammers Y, Ariyurek Y, Chin-A-Woeng T, Vrieling K (2011) The complete chloroplast genome of 17 individuals of pest species Jacobaea vulgaris: SNPs, microsatellites and barcoding markers for population and phylogenetic studies. DNA Research 18: 93-105.

Hegarty MJ, Batstone T, Barker GL, Edwards KJ, Abbott RJ, Hiscock SJ (2011) Nonadditive changes to cytosine methylation as a consequence of hybridization and genome duplication in Senecio (Asteraceae). Molecular Ecology 20: 105-113.

Klinkhamer PGL (2011) Special Issue: Pyrrolizidine alkaloids in Senecio: In honour of the eremitate of Prof. Eddy van der Meijden (Institute of Biology IBL, University of Leiden, the Netherlands) Introduction. Phytochemistry Reviews 10: 1-2.

Langel D, Ober D, Pelser PB (2011) The evolution of pyrrolizidine alkaloid biosynthesis and diversity in the Senecioneae. Phytochemistry Reviews 10: 3-74.

Oberprieler C, Hartl S, Schauer K, Meister J, Heilmann K (2011) Morphological, phytochemical and genetic variation in mixed stands and a hybrid swarm of Senecio germanicus and S. ovatus (Compositae, Senecioneae). Plant Systematics & Evolution 293: 177-191.

  • 2010

Abbott RJ, Hegarty MJ, Hiscock SJ, Brennan AC (2010) Homoploid hybrid speciation in action. Taxon 59: 1375-1386.

Allen AM, Lexer C, Hiscock SJ (2010) Comparative analysis of pistil transcriptomes reveals conserved and novel genes expressed in dry, wet, and semidry stigmas. Plant Physiology 154: 1347-1360.

Allen AM, Lexer C, Hiscock SJ (2010) Characterisation of sunflower-21 (SF21) genes expressed in pollen and pistil of Senecio squalidus (Asteraceae) and their relationship with other members of the SF21 gene family. Sexual Plant Reproduction 23: 173-186.

Brennan AC, Hiscock SJ (2010) Expression and inheritance of sporophytic self-incompatibility in synthetic allohexaploid Senecio cambrensis (Asteraceae). New Phytologist 186: 251-261

Chapman MA, Abbott RJ (2010) Introgression of fitness genes across a ploidy barrier. New Phytologist 186: 63-71.

Kirk H, Vrieling K, Van Der Meijden E, Klinkhamer PGL (2010) Species by environment interactions affect pyrrolizidine alkaloid expression in Senecio jacobaea, Senecio aquaticus, and their hybrids. J. Chemical Ecology 36: 378-387.

Langel D, Ober D, Pelser P (2010) The evolution of pyrrolizidine alkaloid biosynthesis and the diversity in the Senecioneae. Phytochemistry Reviews 10: 3-74

Pelser PB, Tepe EJ, Kennedy AH, Watson LE (2010) The fate of Robinsonia (Asteraceae): sunk in Senecio, but still monophyletic? Phytotaxa 5: 31-46.

Prentis PJ, Woolfit M, Thomas-Hall SR, Ortiz-Barrientos D, Pavasovic A, Lowe AJ, Schenk PM (2010) Massively parallel sequencing and analysis of expressed sequence tags in a successful invasive plant. Annals of Botany 106: 1009-1017.

Oberprieler C, Barth A, Schwarz S, HeilmannJ (2010)Morphological and phytochemical variation, genetic structure and phenology in an introgressive hybrid swarm of Senecio hercynicus and S. ovatus (Compositae, Senecioneae). Plant Systematics & Evolution 286: 153-166.

Sonnleitner M, Flatscher R, Escobar Garcıa P, Rauchova J, Suda J, Schneeweiss GM, Hulber K, Schoenswetter P (2010) Distribution and habitat segregation on different spatial scales among diploid, tetraploid and hexaploid cytotypes of Senecio carniolicus(Asteraceae) in the Eastern Alps. Annals of Botany 106: 967–977.

Rapo C, Muller-Scharer H, Vrieling K, Schaffner U (2010) Is there rapid evolutionary response in introduced populations of tansy ragwort, Jacobaea vulgaris, when exposed to biological control? Evolutionary Ecology 24: 1081-1099