Pecinka lab: Difference between revisions

From OpenWetWare
Jump to navigationJump to search
No edit summary
No edit summary
(16 intermediate revisions by the same user not shown)
Line 8: Line 8:




Our goal is to understand molecular and evolutionary mechanisms shaping plant genomes and epigenomes. We analyze how DNA sequence variation is generated by various mutagenic factors and how these forces are counteracted by the genome repair and maintenance mechanisms. To this end we use the model plant ''Arabidopsis thaliana'' and several other ''Brassicaceae'' and analyze them by forward and reverse genetics, molecular, biochemical, cytogenetic and bioinformatic methods.
Our goal is to understand molecular and evolutionary mechanisms shaping plant genomes and epigenomes. We analyze how DNA sequence and chromatin changes are generated by endo- and exogenous factors and how these forces are balanced by the genome repair and epigenetic mechanisms. To this end we use mainly the model plant ''Arabidopsis thaliana'' and several other ''Brassicaceae'' and analyze them by forward and reverse genetics, molecular, biochemical, cytogenetic and bioinformatic methods.
[[Pecinka_lab:Research | read more...]]
[[Pecinka_lab:Research | read more...]]
|rowspan=2 width=200px style="padding: 5px; background-color: #ffffff; border: 0px solid #4169E1;" |
|rowspan=2 width=200px style="padding: 5px; background-color: #ffffff; border: 0px solid #4169E1;" |
Line 14: Line 14:
<h3><font style="color:#4169E1;">Lab Members</font></h3>
<h3><font style="color:#4169E1;">Lab Members</font></h3>


*[[Pecinka_lab:Ahmed_Abdelsamad|Ahmed Abdelsamad]]
*[[Pecinka_lab:Mariana_Diaz|Mariana Andrea Diaz Smoje]]
*[[Pecinka_lab:Mariana_Diaz|Mariana Andrea Diaz Smoje]]
*[[Pecinka_lab:Andreas_Finke|Andreas Finke]]
*[[Pecinka_lab:Andreas_Finke|Andreas Finke]]
Line 26: Line 25:
*[[Pecinka_lab:Petra_Pecinkova|Petra Pecinkova]]
*[[Pecinka_lab:Petra_Pecinkova|Petra Pecinkova]]


<h3><font style="color:#4169E1;">Visiting scientists</font></h3>
*[[Pecinka_lab:Marlene_Elsässer|Marlene Elsässer]]
*[[Pecinka_lab:Heinrich_Bente|Heinrich Bente]]


[[Pecinka_lab:People|see complete list...]]
[[Pecinka_lab:People|see complete list...]]
Line 34: Line 30:




[http://www4.clustrmaps.com/user/efef92c9 http://www4.clustrmaps.com/stats/maps-no_clusters/openwetware.org-wiki-Pecinka_Lab-thumb.jpg]
 


|-
|-
Line 44: Line 40:
<h3><font style="color:#FF8C00;">Recent Publications</font></h3>  
<h3><font style="color:#FF8C00;">Recent Publications</font></h3>  


*Abdelsamad A, Pecinka A. Pollen-Specific Activation of Arabidopsis Retrogenes Is Associated with Global Transcriptional Reprogramming. Plant Cell DOI: http://​dx.​doi.​org/​10.​1105/​tpc.​114.​126011 (2014). [http://www.plantcell.org/content/early/2014/08/12/tpc.114.126011.full.pdf+html Open access PDF]  
*Baranauskė S, Mickutė M, Plotnikova A, Finke A, Venclovas Č, Klimašauskas S, Vilkaitis G. (2015): Functional mapping of the plant small RNA methyltransferase: HEN1 physically interacts with HYL1 and DICER-LIKE 1 proteins. Nucleic Acids Research 43:2802-2812 [http://nar.oxfordjournals.org/content/43/5/2802.long Full text]
*Pecinka A, Liu C.-H. Drugs for Plant Chromosome and Chromatin Research. Cytogenetic Genome Research DOI: 10.1159/000360774 (2014). [http://www.karger.com/Article/FullText/360774 Full text]
*Willing, Rawat et al. (2015): Genome expansion of Arabis alpina linked with retrotransposition and reduced symmetric DNA methylation. Nature Plants 1:1-7 [http://www.nature.com/articles/nplants201423 Full text]
*Baubec T, Finke A, Mittelsten Scheid O, Pecinka A. Meristem-specific expression of epigenetic regulators safeguards transposon silencing in Arabidopsis. EMBO Reports doi: 10.1002/embr.201337915 (2014). [http://embor.embopress.org/content/early/2014/02/20/embr.201337915 Full text]
*Piofczyk T, Jeena G, Pecinka A. (2015): Arabidopsis thaliana natural variation reveals connections between UV radiation stress and plant pathogen-like defense responses. Plant Physiology Biochemistry DOI: 10.1016/j.plaphy.2015.01.011 (2015) [http://www.sciencedirect.com/science/article/pii/S0981942815000212 Full text]
*Pecinka A, Abdelsamad Ahmed, Vu GTH. Hidden genetic nature of epigenetic natural variation in plants. Trends in Plant Science 18:625-632 (2013) [http://www.sciencedirect.com/science/article/pii/S1360138513001453 Full text]  
*Abdelsamad A, Pecinka A. (2014): Pollen-Specific Activation of Arabidopsis Retrogenes Is Associated with Global Transcriptional Reprogramming. Plant Cell DOI: http:/​/​dx.​doi.​org/​10.​1105/​tpc.​114.​126011 (2014). [http://www.plantcell.org/content/early/2014/08/12/tpc.114.126011.full.pdf+html Open access PDF]  
 




Line 55: Line 52:


<h3><font style="color:red">News</font></h3>
<h3><font style="color:red">News</font></h3>
*2014-08-12: RNA duplicated genes (retrogenes) are more frequent than expected in Arabidopsis and show transcriptional profile similar to animal retrogenes. Find more in our recent Plant Cell publication [http://www.plantcell.org/content/early/2014/08/12/tpc.114.126011.full.pdf+html Open access PDF]
*2015-05: Andreas co-authored on the paper showing physical interaction between specific miRNA components. Congratulations! [http://nar.oxfordjournals.org/content/43/5/2802 Full text]
*2014-03-31: The manuscript "Drugs for Plant Chromosome and Chromatin Research" published in the special issue of Cytogenetic Genome Research [http://www.karger.com/Article/FullText/360774 Full text]
*2015-02-10: "Arabis alpina" genome reveals peculiar pattern of DNA methylation. See more in the current Nature Plants paper by Schneeberger lab [http://www.nature.com/articles/nplants201423 Full text]
*2015-02-05: Arabidopsis natural variation in response to UV stress reveals connections to pathogen-like responses. Read more in our Plant Physiology and Biochemistry paper [http://www.sciencedirect.com/science/article/pii/S0981942815000212 Full text]
 
 





Revision as of 07:54, 22 May 2015


Home      Research      People      Publications      Protocols      Resources      Seminars      Positions      Lab life     


Research

The Pecinka lab is hosted by the Department of Plant Breeding and Genetics at the Max Planck Institute for Plant Breeding Research in Cologne, Germany.


Our goal is to understand molecular and evolutionary mechanisms shaping plant genomes and epigenomes. We analyze how DNA sequence and chromatin changes are generated by endo- and exogenous factors and how these forces are balanced by the genome repair and epigenetic mechanisms. To this end we use mainly the model plant Arabidopsis thaliana and several other Brassicaceae and analyze them by forward and reverse genetics, molecular, biochemical, cytogenetic and bioinformatic methods. read more...

Lab Members

Technitians


see complete list...



Recent Publications

  • Baranauskė S, Mickutė M, Plotnikova A, Finke A, Venclovas Č, Klimašauskas S, Vilkaitis G. (2015): Functional mapping of the plant small RNA methyltransferase: HEN1 physically interacts with HYL1 and DICER-LIKE 1 proteins. Nucleic Acids Research 43:2802-2812 Full text
  • Willing, Rawat et al. (2015): Genome expansion of Arabis alpina linked with retrotransposition and reduced symmetric DNA methylation. Nature Plants 1:1-7 Full text
  • Piofczyk T, Jeena G, Pecinka A. (2015): Arabidopsis thaliana natural variation reveals connections between UV radiation stress and plant pathogen-like defense responses. Plant Physiology Biochemistry DOI: 10.1016/j.plaphy.2015.01.011 (2015) Full text
  • Abdelsamad A, Pecinka A. (2014): Pollen-Specific Activation of Arabidopsis Retrogenes Is Associated with Global Transcriptional Reprogramming. Plant Cell DOI: http:/​/​dx.​doi.​org/​10.​1105/​tpc.​114.​126011 (2014). Open access PDF


News

  • 2015-05: Andreas co-authored on the paper showing physical interaction between specific miRNA components. Congratulations! Full text
  • 2015-02-10: "Arabis alpina" genome reveals peculiar pattern of DNA methylation. See more in the current Nature Plants paper by Schneeberger lab Full text
  • 2015-02-05: Arabidopsis natural variation in response to UV stress reveals connections to pathogen-like responses. Read more in our Plant Physiology and Biochemistry paper Full text