# McClean: Plotting Stacked Histograms

### From OpenWetWare

(→Example) |
(→Example) |
||

Line 13: | Line 13: | ||

</pre> | </pre> | ||

- | + | Chose bins (you probably want to use the same bin for every plot, since you will be stacking them along the same y-axis) and then bin your data using the Matlab "hist" command. We also keep track of the distributions' means since we use this to color the histograms later. | |

<pre> | <pre> | ||

- | + | %Set up bins (we are making histograms of flow cytometry data so we chose logarithmically spaced bins): | |

- | + | bins=logspace(0,4,60); | |

- | + | x=bins; | |

+ | |||

+ | %Bin the data using "hist" and keep track of the number of elements "n" in each bin "x" for each row in "Data". Also keep track of the mean of each row of "Data": | ||

+ | |||

+ | HistData=[]; | ||

+ | Means=[]; | ||

+ | |||

+ | for i=1:5 | ||

+ | [n,x]=hist(Data(i,:),x); | ||

+ | HistData=[HistData; n./sum(n)]; | ||

+ | Means=[Means mean(Data(i,:))]; | ||

+ | end | ||

</pre> | </pre> | ||

## Revision as of 17:09, 17 July 2013

## Contents |

# Summary

This explains the basics of plotting histograms stacked vertically (this allows you to see the shift, in for instance, fluorescence in a population of cells analyzed by flow cytometry).

# Example

Your data could be anything. In this example, the variable "Data" contains five (5) rows, each of which contain 9000 fluorescence readings from a FACS experiment. Each row represents a timepoint, with induction of GFP increasing with time.

%% Preliminaries: close all; clear all; load('Data.mat')

Chose bins (you probably want to use the same bin for every plot, since you will be stacking them along the same y-axis) and then bin your data using the Matlab "hist" command. We also keep track of the distributions' means since we use this to color the histograms later.

%Set up bins (we are making histograms of flow cytometry data so we chose logarithmically spaced bins): bins=logspace(0,4,60); x=bins; %Bin the data using "hist" and keep track of the number of elements "n" in each bin "x" for each row in "Data". Also keep track of the mean of each row of "Data": HistData=[]; Means=[]; for i=1:5 [n,x]=hist(Data(i,:),x); HistData=[HistData; n./sum(n)]; Means=[Means mean(Data(i,:))]; end

This looks ok, but we would really like some error bars, so we use a handy function (barwitherr) from the Matlab file exchange:

h=figure; hold; barwitherr([Strain1_std' Strain2_std'], [1 2 3 4],[Strain1_Mean' Strain2_Mean']) legend('Strain 1','Strain 2') pause; close all;

This is ok, but we'd rather only have one-sided error bars. To do this, use a 4x2x2 matrix for the errors: cat(3,zeros(4,2),[Strain1_std' Strain2_std'])

The function barwitherr uses the first matrix zeros(4,2) as the lower error, and the second matrix [Strain1_std' Strain2_std'] for the upper errors:

barwitherr(cat(3,zeros(4,2),[Strain1_std' Strain2_std']), [1 2 3 4],[Strain1_Mean' Strain2_Mean']) legend('Strain 1','Strain 2') pause; close all;

Don't like the colors? You can change them by modifying the colormap:

barmap=[0.7 0.7 0.7; 0.05 .45 0.1]; %[0.7 0.7 0.7] is grey, [ 0.05 .45 0.1] is green colormap(barmap); ylabel('Data','FontSize',14) title('Title of Experiment','FontSize',14) pause;

It isn't very useful to have our experimental conditions labelled 1,2,3,4. To change the x-ticks to labels:

set(ax, 'XTick',[1 2 3 4],'XTickLabel',{'A','B','C','D' }); pause;

Maybe we would like more information in our x-tick labels. But if the labels are too long, they will overlap. To get around this, rotate the x-tick labels using the function xticklabel_rotate from the Matlab file exchange (see references below):

set(ax, 'FontSize',12,'XTick',[1 2 3 4],'XTickLabel',{'Condition A','Condition B','Condition C','Condition D' }); xticklabel_rotate([1 2 3 4],45,{'Condition A','Condition B','Condition C','Condition D' }) pause

If you are going to use this figure in a presentation or paper you can save it in various forms (including as a file for adobe illustrator). Recall that h is our figure handle:

saveas(h, 'ExampleBar.fig','fig') saveas(h, 'ExampleBar.png','png') saveas(h, 'ExampleBar.ai','ai') close all;

# Code

You can copy and paste the code below into a Matlab m-file to run all of the examples shown above. You will also need the two functions listed in the references below, available from the Matlab file exchange at Matlab Central.

close all; %Suppose you have the following data for two different strains across 4 %different experimental conditions (Conditions A,B,C,D, from left to right) Strain1_Mean=[0.5137 3.2830 1.5887 5.9188]; Strain2_Mean=[0.4042 2.9884 0.5709 2.7766]; Strain1_std=[1.1393 2.8108 2.2203 3.5233]; Strain2_std=[0.8762 2.8478 0.9878 2.2197]; %Plot this data as a bar chart bar([1 2 3 4],[Strain1_Mean' Strain2_Mean']) legend('Strain 1','Strain 2') pause; close all; %This looks ok, but we would really like some error bars, so we use a handy %function from the file exchange: h=figure; hold; barwitherr([Strain1_std' Strain2_std'], [1 2 3 4],[Strain1_Mean' Strain2_Mean']) legend('Strain 1','Strain 2') pause; close all; %This is ok, but we'd rather only have one-sided error bars. To do this, %you will send barwitherr zeros for the lower error and keep the upper %error as is by sending in the matrix cat(3,zeros(4,2),[Strain1_std' %Strain2_std']) for the error barwitherr(cat(3,zeros(4,2),[Strain1_std' Strain2_std']), [1 2 3 4],[Strain1_Mean' Strain2_Mean']) legend('Strain 1','Strain 2') pause; close all; %Now let's use better colors by changing the color map and set the bar %widths, line widths, axis fonts etc to something prettier barwitherr(cat(3,zeros(4,2),[Strain1_std' Strain2_std']), [1 2 3 4],[Strain1_Mean' Strain2_Mean'],'LineWidth',2,'BarWidth',0.9) legend('Strain 1','Strain 2') %set the axis properties ax=gca; set(ax, 'FontSize',12) %Don't like the colors? You can change them by modifying the colormap: barmap=[0.7 0.7 0.7; 0.05 .45 0.1]; %[0.7 0.7 0.7] is grey, [ 0.05 .45 0.1] is a green colormap(barmap); ylabel('Data','FontSize',14) title('Title of Experiment','FontSize',14) pause; %It isn't very useful to have our experimental conditions labelled 1,2,3,4 %so can we change these to words? Yes: set(ax, 'XTick',[1 2 3 4],'XTickLabel',{'A','B','C','D' }); pause; %But this isn't perfect, maybe we want more information on the axis. To %have actual labels rotate them using the handy xticklabel_rotate function: %set(ax, 'FontSize',12,'XTick',[1 2 3 4],'XTickLabel',{'Condition A','Condition B','Condition C','Condition D' }); xticklabel_rotate([1 2 3 4],45,{'Condition A','Condition B','Condition C','Condition D' }) pause %If you are going to use this figure in a presentation or paper you can %save it in various forms (including as a file for adobe illustrator): %Recall that h is our figure handle: saveas(h, 'ExampleBar.fig','fig') saveas(h, 'ExampleBar.png','png') saveas(h, 'ExampleBar.ai','ai') close all;

# Notes

Please feel free to post comments, questions, or improvements to this protocol. Happy to have your input!

**Megan N McClean 17:27, 11 June 2012 (EDT)**: There are probably more elegant ways of doing this, but this solution has worked well for me so far. Please feel free to update and add information as you figure out better ways of doing this.

# References

Function xticklabel_rotate: xticklabel_rotate

Function barwitherr: barwitherr

# Contact

**Megan N McClean 14:01, 11 June 2012 (EDT)**

or instead, discuss this protocol.