Matthew E. Jurek Week 6: Difference between revisions

From OpenWetWare
Jump to navigationJump to search
(→‎Project 1: answered question 2)
(→‎Project 1: fixed spelling type-o)
Line 3: Line 3:
==Project 1==
==Project 1==
*Tony and I are interested in the third project.  Using the equations derived in class today, we are going to look at two things in particular.  The model of equations needs to include the influx of the chemostat.  We will begin by incorporating this into the dni/dt equation by adding the influx to the tail end of the equation.  Aside from that, it appears glutamate is coming from elsewhere as the graph of glutamate in the paper is of much larger scale.  We feel there is a source of glutamate aside from the conversions discussed in class.  As a result, we hope to incorporate this into the dx/dt equation after performing research on outside sources of glutamate within yeast.  The described objectives are simply hypotheses at this point.  It will be interesting to see how the models turn out.
*Tony and I are interested in the third project.  Using the equations derived in class today, we are going to look at two things in particular.  The model of equations needs to include the influx of the chemostat.  We will begin by incorporating this into the dni/dt equation by adding the influx to the tail end of the equation.  Aside from that, it appears glutamate is coming from elsewhere as the graph of glutamate in the paper is of much larger scale.  We feel there is a source of glutamate aside from the conversions discussed in class.  As a result, we hope to incorporate this into the dx/dt equation after performing research on outside sources of glutamate within yeast.  The described objectives are simply hypotheses at this point.  It will be interesting to see how the models turn out.
*There is s amino acid permease gene family within yeast that includes [http://mcb.asm.org/content/19/8/5405.long| Ssy1].  This protein is able to sense extracellular amino acid concentrations.  More importantly, this protein reacts within the yeast based on what it senses.  Although the linked article goes into great detail regarding a number of scenarios that were tested regarding this protein, glutamate activity is what we're interested in.  This article actually touches on changes in glutamate presence based on the various factors tested.  The experiment is relevant as it may help us generate sources of glutamate outside of the reactions discussed in class.
*There is an amino acid permease gene family within yeast that includes [http://mcb.asm.org/content/19/8/5405.long| Ssy1].  This protein is able to sense extracellular amino acid concentrations.  More importantly, this protein reacts within the yeast based on what it senses.  Although the linked article goes into great detail regarding a number of scenarios that were tested regarding this protein, glutamate activity is what we're interested in.  This article actually touches on changes in glutamate presence based on the various factors tested.  The experiment is relevant as it may help us generate sources of glutamate outside of the reactions discussed in class.

Revision as of 21:14, 21 February 2013

Matthew E. Jurek BIOL398-03/S13

Assignment Page

User Page

Project 1

  • Tony and I are interested in the third project. Using the equations derived in class today, we are going to look at two things in particular. The model of equations needs to include the influx of the chemostat. We will begin by incorporating this into the dni/dt equation by adding the influx to the tail end of the equation. Aside from that, it appears glutamate is coming from elsewhere as the graph of glutamate in the paper is of much larger scale. We feel there is a source of glutamate aside from the conversions discussed in class. As a result, we hope to incorporate this into the dx/dt equation after performing research on outside sources of glutamate within yeast. The described objectives are simply hypotheses at this point. It will be interesting to see how the models turn out.
  • There is an amino acid permease gene family within yeast that includes Ssy1. This protein is able to sense extracellular amino acid concentrations. More importantly, this protein reacts within the yeast based on what it senses. Although the linked article goes into great detail regarding a number of scenarios that were tested regarding this protein, glutamate activity is what we're interested in. This article actually touches on changes in glutamate presence based on the various factors tested. The experiment is relevant as it may help us generate sources of glutamate outside of the reactions discussed in class.