Lee:Literature Transporters: Difference between revisions

From OpenWetWare
Jump to navigationJump to search
Line 55: Line 55:


==P-glycoprotein (MDR1)==
==P-glycoprotein (MDR1)==
<biblio>
# Aszalos A. Drug-drug interactions affected by the transporter protein, P-glycoprotein (ABCB1, MDR1) I. Preclinical aspects. Drug Discov Today. 2007 Oct;12(19-20):[http://www.sciencedirect.com/science?_ob=MImg&_imagekey=B6T64-4PMJB7Y-1-5&_cdi=5020&_user=16764&_pii=S1359644607003030&_origin=search&_coverDate=10%2F31%2F2007&_sk=999879980&view=c&wchp=dGLbVlz-zSkzS&md5=5d885a3c7361f7744bee594979e5f2c6&ie=/sdarticle.pdf 833-7]. (pmid=17933684)
#1 pmid=17933684  
# Aszalos A. Drug-drug interactions affected by the transporter protein, P-glycoprotein (ABCB1, MDR1) II. Clinical aspects. Drug Discov Today. 2007 Oct;12(19-20):[http://www.sciencedirect.com/science?_ob=MImg&_imagekey=B6T64-4PMT5XT-1-1&_cdi=5020&_user=16764&_pii=S1359644607003005&_origin=search&_coverDate=10%2F31%2F2007&_sk=999879980&view=c&wchp=dGLzVtz-zSkzS&md5=819e003053bf3a51219b92008546c264&ie=/sdarticle.pdf 838-43]. (pmid=17933685)
#2 pmid=17933685
# pmid=17766652
#3 pmid=17766652
</biblio>


==bile acid signaling==
==bile acid signaling==

Revision as of 13:41, 19 January 2011

Home                  Research                  Lab Members                  Publications                  JC                      Links                  Internal                  Contact                 

Feel free to add articles ...

Transporters general review

  1. Stanley LA, Horsburgh BC, Ross J, Scheer N, Wolf CR. Drug transporters: gatekeepers controlling access of xenobiotics to the cellular interior. Drug Metab Rev. 2009;41(1):27-65. (PMID: 19514970)
  2. Oswald S, Grube M, Siegmund W, Kroemer HK. Transporter-mediated uptake into cellular compartments. Xenobiotica. 2007 Oct-Nov;37(10-11):1171-95.
  3. Shugarts S, Benet LZ. The role of transporters in the pharmacokinetics of orally administered drugs. Pharm Res. 2009 Sep;26(9):2039-54.
  4. Li P, Wang GJ, Robertson TA, Roberts MS. Liver transporters in hepatic drug disposition: an update. Curr Drug Metab. 2009 Jun;10(5):482-98.
  5. Oostendorp RL, Beijnen JH, Schellens JH. The biological and clinical role of drug transporters at the intestinal barrier. Cancer Treat Rev. 2009 Apr;35(2):137-47.
  6. Srimaroeng C, Perry JL, Pritchard JB. Physiology, structure, and regulation of the cloned organic anion transporters. Xenobiotica. 2008 Jul;38(7-8):889-935.
  7. Alrefai WA, Gill RK. Bile acid transporters: structure, function, regulation and pathophysiological implications.Pharm Res. 2007 Oct;24(10):1803-23. (pmid=17404808)
  8. Dawson PA, Lan T, Rao A. Bile acid transporters. J Lipid Res. 2009 Dec;50(12):2340-57. (pmid=19498215)
  9. DuBuske LM. The role of P-glycoprotein and organic anion-transporting polypeptides in drug interactions. Drug Saf. 2005;28(9):789-801. (pmid=16119972)

OATP family general review

  1. Hagenbuch B, Meier PJ. Organic anion transporting polypeptides of the OATP/ SLC21 family: phylogenetic classification as OATP/ SLCO superfamily, new nomenclature and molecular/functional properties. Pflugers Arch. 2004 Feb;447(5):653-65. (pmid=14579113)
  2. Niemi M. Role of OATP transporters in the disposition of drugs. Pharmacogenomics. 2007 Jul;8(7):787-802. (pmid=18240907)

OATP knockout models

  1. Van de Steeg E, Wagenaar E, van der Kruijssen CM, Burggraaff JE, de Waart DR, Elferink RP, Kenworthy KE, Schinkel AH.Organic anion transporting polypeptide 1a/1b-knockout mice provide insights into hepatic handling of bilirubin, bile acids, and drugs.J Clin Invest. 2010 Aug 2;120(8):2942-52. doi: 10.1172/JCI42168. Epub 2010 Jul 19.2942-2952(PMID=20644253)
  2. Van de Steeg E, van Esch A, Wagenaar E, van der Kruijssen CM, van Tellingen O, Kenworthy KE, Schinkel AH.High impact of Oatp1a/1b transporters on in vivo disposition of the hydrophobic anticancer drug paclitaxel.Clin Cancer Res. 2010 Nov 19. [Epub ahead of print][1] (PMID: 21097690)

Analysis: Methods

  1. Koellensperger G, Hann S.Ultra-fast HPLC-ICP-MS analysis of oxaliplatin in patient urine. Anal Bioanal Chem. 2010 May;397(1):401-6. Epub 2010 Feb 19.401-406 (PMID: 20165835)


OATP1B3

  1. Ismair MG, Stieger B, Cattori V, Hagenbuch B, Fried M, Meier PJ, Kullak-Ublick GA: Hepatic uptake of cholecystokinin octapeptide by organic anion-transporting polypeptides OATP4 and OATP8 of rat and human liver. Gastroenterology 2001, 121:1185-1190.
  2. Abe T, Unno M, Onogawa T, Tokui T, Kondo TN, Nakagomi R, Adachi H, Fujiwara K, Okabe M, Suzuki T, et al.: LST-2, a human liver-specific organic anion transporter, determines methotrexate sensitivity in gastrointestinal cancers. Gastroenterology 2001, 120:1689-1699.
  3. Jung D, Podvinec M, Meyer UA, Mangelsdorf DJ, Fried M, Meier PJ, Kullak-Ublick GA: Human organic anion transporting polypeptide 8 promoter is transactivated by the farnesoid X receptor/bile acid receptor. Gastroenterology 2002, 122:1954-1966.
  4. Cui Y, Walter B: Influence of albumin binding on the substrate transport mediated by human hepatocyte transporters OATP2 and OATP8. J Gastroenterol 2003, 38:60-68.
  5. Letschert K, Keppler D, Konig J: Mutations in the SLCO1B3 gene affecting the substrate specificity of the hepatocellular uptake transporter OATP1B3 (OATP8). Pharmacogenetics 2004, 14:441-452.
  6. Smith NF, Acharya MR, Desai N, Figg WD, Sparreboom A: Identification of OATP1B3 as a high-affinity hepatocellular transporter of paclitaxel. Cancer Biol Ther 2005, 4:815-818.
  7. Al Sarakbi W, Mokbel R, Salhab M, Jiang WG, Reed MJ, Mokbel K: The role of STS and OATP-B mRNA expression in predicting the clinical outcome in human breast cancer. Anticancer Res 2006, 26:4985-4990.
  8. Yamaguchi H, Okada M, Akitaya S, Ohara H, Mikkaichi T, Ishikawa H, Sato M, Matsuura M, Saga T, Unno M, et al.: Transport of fluorescent chenodeoxycholic acid via the human organic anion transporters OATP1B1 and OATP1B3. J Lipid Res 2006, 47:1196-1202.
  9. Lockhart AC, Harris E, LaFleur BJ, Merchant NB, Washington MK, Resnick MB, Yeatman TJ, Lee W: Organic anion transporting polypeptide 1B3 (OATP1B3) is overexpressed in colorectal tumors and is a predictor of clinical outcome. Clin Exp Gastroenterol 2008, 1:1-7.
  10. Lee W, Belkhiri A, Lockhart AC, Merchant N, Glaeser H, Harris EI, Washington MK, Brunt EM, Zaika A, Kim RB, et al.: Overexpression of OATP1B3 confers apoptotic resistance in colon cancer. Cancer Res 2008, 68:10315-10323.
  11. Narita M, Hatano E, Arizono S, Miyagawa-Hayashino A, Isoda H, Kitamura K, Taura K, Yasuchika K, Nitta T, Ikai I, et al.: Expression of OATP1B3 determines uptake of Gd-EOB-DTPA in hepatocellular carcinoma. J Gastroenterol 2009, 44:793-798.
  12. Yamaguchi H, Kobayashi M, Okada M, Takeuchi T, Unno M, Abe T, Goto J, Hishinuma T, Mano N: Rapid screening of antineoplastic candidates for the human organic anion transporter OATP1B3 substrates using fluorescent probes. Cancer Lett 2008, 260:163-169.
  13. Baldes C, Koenig P, Neumann D, Lenhof HP, Kohlbacher O, Lehr CM: Development of a fluorescence-based assay for screening of modulators of human Organic Anion Transporter 1B3 (OATP1B3). Eur J Pharm Biopharm 2005.
  14. Briz O, Serrano MA, MacIas RI, Gonzalez-Gallego J, Marin JJ: Role of organic anion-transporting polypeptides, OATP-A, OATP-C and OATP-8, in the human placenta-maternal liver tandem excretory pathway for foetal bilirubin. Biochem J 2003, 371:897-905.
  15. Muto M, Onogawa T, Suzuki T, Ishida T, Rikiyama T, Katayose Y, Ohuchi N, Sasano H, Abe T, Unno M: Human liver-specific organic anion transporter-2 is a potent prognostic factor for human breast carcinoma. Cancer Sci 2007, 98:1570-1576.
  16. Nozawa T, Minami H, Sugiura S, Tsuji A, Tamai I: Role of organic anion transporter OATP1B1 (OATP-C) in hepatic uptake of irinotecan and its active metabolite, 7-ethyl-10-hydroxycamptothecin: in vitro evidence and effect of single nucleotide polymorphisms. Drug Metab Dispos 2005, 33:434-439.
  17. Hamada A, Sissung T, Price DK, Danesi R, Chau CH, Sharifi N, Venzon D, Maeda K, Nagao K, Sparreboom A, et al.: Effect of SLCO1B3 haplotype on testosterone transport and clinical outcome in caucasian patients with androgen-independent prostatic cancer. Clin Cancer Res 2008, 14:3312-3318.
  18. Gui C, Hagenbuch B: Amino acid residues in transmembrane domain 10 of organic anion transporting polypeptide 1B3 are critical for cholecystokinin octapeptide transport. Biochemistry 2008, 47:9090-9097.
  19. Kiyotani K, Mushiroda T, Kubo M, Zembutsu H, Sugiyama Y, Nakamura Y: Association of genetic polymorphisms in SLCO1B3 and ABCC2 with docetaxel-induced leukopenia. Cancer Sci 2008, 99:967-972.
  20. Maeda T, Irokawa M, Arakawa H, Kuraoka E, Nozawa T, Tateoka R, Itoh Y, Nakanishi T, Tamai I: Uptake transporter organic anion transporting polypeptide 1B3 contributes to the growth of estrogen-dependent breast cancer. J Steroid Biochem Mol Biol 2010.
  21. Ichihara S, Kikuchi R, Kusuhara H, Imai S, Maeda K, Sugiyama Y: DNA methylation profiles of organic anion transporting polypeptide 1B3 in cancer cell lines. Pharm Res 2010, 27:510-516.

P-glycoprotein (MDR1)

  1. Aszalos A. Drug-drug interactions affected by the transporter protein, P-glycoprotein (ABCB1, MDR1) I. Preclinical aspects. Drug Discov Today. 2007 Oct;12(19-20):833-7. (pmid=17933684)
  2. Aszalos A. Drug-drug interactions affected by the transporter protein, P-glycoprotein (ABCB1, MDR1) II. Clinical aspects. Drug Discov Today. 2007 Oct;12(19-20):838-43. (pmid=17933685)
  3. pmid=17766652

bile acid signaling

  1. Donnellan F, Keating N, Geoghegan P, Murray FE, Harvey BJ, and Keely SJ. JNK mitogen-activated protein kinase limits calcium-dependent chloride secretion across colonic epithelial cells. Am J Physiol Gastrointest Liver Physiol. 2010 Jan;298(1):G37-44. DOI:10.1152/ajpgi.00202.2009 | PubMed ID:19875701 | HubMed [1]
  2. Cáceres M, Tobar N, Guerrero J, Smith PC, and Martínez J. c-jun-NH2JNK mediates invasive potential and EGFR activation by regulating the expression of HB-EGF in a urokinase-stimulated pathway. J Cell Biochem. 2008 Feb 15;103(3):986-93. DOI:10.1002/jcb.21469 | PubMed ID:17654528 | HubMed [2]
  3. Sommerfeld A, Reinehr R, and Häussinger D. Bile acid-induced epidermal growth factor receptor activation in quiescent rat hepatic stellate cells can trigger both proliferation and apoptosis. J Biol Chem. 2009 Aug 14;284(33):22173-22183. DOI:10.1074/jbc.M109.005355 | PubMed ID:19553664 | HubMed [3]
  4. Takeuchi K, Shin-ya T, Nishio K, and Ito F. Mitogen-activated protein kinase phosphatase-1 modulated JNK activation is critical for apoptosis induced by inhibitor of epidermal growth factor receptor-tyrosine kinase. FEBS J. 2009 Mar;276(5):1255-65. DOI:10.1111/j.1742-4658.2008.06861.x | PubMed ID:19175673 | HubMed [4]
  5. Ding G, Zhang A, Huang S, Pan X, Zhen G, Chen R, and Yang T. ANG II induces c-Jun NH2-terminal kinase activation and proliferation of human mesangial cells via redox-sensitive transactivation of the EGFR. Am J Physiol Renal Physiol. 2007 Dec;293(6):F1889-97. DOI:10.1152/ajprenal.00112.2007 | PubMed ID:17881465 | HubMed [5]
  6. Reinehr R, Becker S, Wettstein M, and Häussinger D. Involvement of the Src family kinase yes in bile salt-induced apoptosis. Gastroenterology. 2004 Nov;127(5):1540-57. DOI:10.1053/j.gastro.2004.08.056 | PubMed ID:15521021 | HubMed [6]
  7. Qiao L, Studer E, Leach K, McKinstry R, Gupta S, Decker R, Kukreja R, Valerie K, Nagarkatti P, El Deiry W, Molkentin J, Schmidt-Ullrich R, Fisher PB, Grant S, Hylemon PB, and Dent P. Deoxycholic acid (DCA) causes ligand-independent activation of epidermal growth factor receptor (EGFR) and FAS receptor in primary hepatocytes: inhibition of EGFR/mitogen-activated protein kinase-signaling module enhances DCA-induced apoptosis. Mol Biol Cell. 2001 Sep;12(9):2629-45. DOI:10.1091/mbc.12.9.2629 | PubMed ID:11553704 | HubMed [7]
  8. Yoon JH, Higuchi H, Werneburg NW, Kaufmann SH, and Gores GJ. Bile acids induce cyclooxygenase-2 expression via the epidermal growth factor receptor in a human cholangiocarcinoma cell line. Gastroenterology. 2002 Apr;122(4):985-93. DOI:10.1053/gast.2002.32410 | PubMed ID:11910351 | HubMed [8]
  9. Chen K, Vita JA, Berk BC, and Keaney JF Jr. c-Jun N-terminal kinase activation by hydrogen peroxide in endothelial cells involves SRC-dependent epidermal growth factor receptor transactivation. J Biol Chem. 2001 May 11;276(19):16045-50. DOI:10.1074/jbc.M011766200 | PubMed ID:11278982 | HubMed [9]
  10. Qiao L, Han SI, Fang Y, Park JS, Gupta S, Gilfor D, Amorino G, Valerie K, Sealy L, Engelhardt JF, Grant S, Hylemon PB, and Dent P. Bile acid regulation of C/EBPbeta, CREB, and c-Jun function, via the extracellular signal-regulated kinase and c-Jun NH2-terminal kinase pathways, modulates the apoptotic response of hepatocytes. Mol Cell Biol. 2003 May;23(9):3052-66. DOI:10.1128/MCB.23.9.3052-3066.2003 | PubMed ID:12697808 | HubMed [10]
  11. Zucchini-Pascal N, de Sousa G, Pizzol J, and Rahmani R. Pregnane X receptor activation protects rat hepatocytes against deoxycholic acid-induced apoptosis. Liver Int. 2010 Feb;30(2):284-97. DOI:10.1111/j.1478-3231.2009.02108.x | PubMed ID:19737350 | HubMed [11]
All Medline abstracts: PubMed | HubMed