LauraTerada Individual Journal Assignment Week 11

From OpenWetWare
Revision as of 19:46, 29 March 2013 by Laura Terada (talk | contribs) (outline submission)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

Acclimation of Saccharomyces cerevisiae to Low Temperature: A Chemostat-Based Transcriptome Analysis

Term Definitions

Outline

  • Transcriptional responses to low temperatures were analyzed in this study
    • Adaptation is the stress-response to a rapid phenomena, while acclimation is the physiological response from a long-term phenomena
    • This study focuses on acclimation
    • There are known genes that have been seen in cold-shock studies (e.g. trehalose-synthesis genes, cell-wall mannoproteins, fatty-acid desaturase, ribosome biogenesis, etc.)
    • Chemostat cultures are better than batch cultures because it allows a controlled environment independent of other culture conditions
    • This study is significant because it shows a difference between chemostat-based and literature data in regards to low-temperature acclimation over long-term and short-term scales
    • Goal is to study stead-state, acclimatized growth of the yeast at cold temperatures through transcriptional regulation data
  • Steady-state chemostat conditions
    • Yeast strain used: haploid, S. cerevisiae strain CEN.PK113-7D (MATa)
    • Dilution rate fixed at 0.03 1/h
    • Chemostat at both 12C and 30C with a 1.0 L volume and pH of 5.0
    • Growth medium was limited by either carbon or nitrogen with all other factors controlled in excess
    • Trehalose (triplicate) and glycogen (duplicate) measurements were performed; trehalose n=3, glycogen n=2 under 4 growth conditions
    • Three independently cultured replicates for the 4 growth conditions
    • 4 growth conditions: glucose limiting 12C, glucose limiting 30C, ammonium limiting 12C, ammonium limiting 30C
  • Used microarray analysis, promoter analysis, and statistical assessment
    • Microarrays were performed for RNA quality and used microsoft Excel for significance analysis
    • Promoter analysis was used by a web-based software
    • Statistical assessment was performed for overrepresentation of transcription-factor binding sites
    • Used Fisher's exact text, with a Bonferroni correction and a p value threshold of 0.01
    • The datasets generated were compared with other datasets from previous studies
  • Growth efficiency was not affected by varying growth temperatures (Table 1)
    • Proven by similar biomass and fermentation yields at 12C and 30C in carbon and nitrogen limiting chemostats
  • In glucose limitation, 494 genes changed transcription levels between the two temperatures, while 806 genes did the same but in nitrogen limitation (Fig 1)
    • 16% of the yeast genes was temperature-responsive
  • The temperature-responsive genes were screened for functional categories (Fig 2)
  • Low temperatures result in changed kinetics for the limiting nutrient and enhanced catabolite repression
    • 12C, residual concentrations of growth-limiting nutrients were higher than at 30C
    • Changes in transport kinetics from changes in transcript levels of genes involved in growth-limiting nutrient uptake (Fig 2)
    • Ex: HXT2 and HXT3 hexose-transport genes increased transcription at 13C compared to 30C
    • Residual concentrations of the limiting nutrient is low to prevent catabolite repression
  • The induction of trelahose and glycogen formation genes are not needed for yeast acclimation to low temperatures
    • At 12C, trelahose and glycogen metabolism genes were not upregulated
    • In glucose limitation, gene transcription did not change, and im ammonia limitation it slightly decreased
  • When adapted to low temperatures, the yeast cells recede the up-regulation of storage carbohydrate synthesis (Table 3)
  • 16 genes in ribosome biogenesis in both conditions and 80 genes in protein synthesis in ammonia limited conditions showed higher transcription levels at 13C
    • Increased protein content compensates for impaired enzyme kinetics at 13C
  • In comparison to other studies, gene regulation differs
    • When comparing to 3 other studies, 259 (low-adaptation) genes also responded to decreasing temperature, but the responses were not consistent (Fig 3)
    • 29 of these genes were transcriptionally regulated at adaptation and acclimation to low temperature (Fig 4)
    • Only 4 of these showed consistent regulation patterns
  • Environmental stress response is not a response to low temperatures, but it is a response due to adaptation from rapid exposure to low temperatures
  • Conclusion
    • Growth-limiting nutrients were higher at 12C shown by gene expression for nutrient transporters
    • Transcription of environmental stress response genes decreased at 12C
    • Trehalose is not involved in steady-state low temperature adaptation
    • Acclimation does not only rely on transcriptional reprogramming, but on changing intracellular metabolite levels as well