IGEM:Imperial/2010/Modelling

From OpenWetWare
Revision as of 02:15, 11 August 2010 by Piotr D. Faba (talk | contribs)
Jump to navigationJump to search

Have a look at this link: Synthetic Biology (Spring2008): Computer Modelling Practicals

Have a look at Cell Designer to easily generate images of the system.

Example on how Valencia 2006 team used SimulLink to simulate their project: Valencia 2006 PowerPoint presentation

Output amplification model

First attempt

Is it better to use TEV all the way or HIV1? Modelling should allows us to take decision which design is more efficient. If taken further, it will allow us to determine number of amplification steps that are most favourable.

A
At each stage of amplification a distinct protease is being used
A
At each stage of amplification a distinct protease is being used

A
TEV is used at both stages of amplification
A
TEV is used at both stages of amplification

Second attempt

A
Model improved to account for the enzymes (protease action)

Kinetic constants

Quality GFP TEV split TEV split GFP
Km and Kcat Doesn't apply TEV constants (Km and kcat) 40% of whole TEV Doesn't apply
half-life or degradation rate Half-life of GFP in Bacillus = 1.5 hours - ref. Chris ? ? Half-life shorter than GFP
production rate in B.sub ? ? ? ?

Conclusions

We couldn't obtain all the necessary constants. Hence, we decided to make educated guesses about possible relative values between the constants as well as varying them and observing the change in output.

As the result, we concluded that the amplification happens at each amplification level proposed. It's magnitude varies depending on the constants. There doesn’t seem to be much difference in substitution of TEV with HIV1.