IGEM:IMPERIAL/2006/project/Oscillator/Theoretical Analyses/Results: Difference between revisions

From OpenWetWare
Jump to navigationJump to search
 
(One intermediate revision by the same user not shown)
Line 22: Line 22:
::*<b>[[IGEM:IMPERIAL/2006/project/Oscillator/Theoretical Analyses/Results/2D Model3| Detailed Analysis for Model with Bounded Growths]]</b>
::*<b>[[IGEM:IMPERIAL/2006/project/Oscillator/Theoretical Analyses/Results/2D Model3| Detailed Analysis for Model with Bounded Growths]]</b>
<br><br>
<br><br>
[[Image:blockdiagram.jpg|thumb|600px|center|The path from Lotka-Volterra to the 2D model of the Predation Oscillator ]]
<br>
:*<font size="4">'''2D Model 3bis: Bounded  Prey Growth and Prey Killing '''</font size="4">   
:*<font size="4">'''2D Model 3bis: Bounded  Prey Growth and Prey Killing '''</font size="4">   
:::[[Image:Model3a.PNG]]
:::[[Image:Model3a.PNG]]

Latest revision as of 07:40, 2 November 2006

Analysis of the Model of the Molecular Predation Oscillator


Our Results

During the run of the summer 2006, we had time to study six 2-dimensional Dynamical Systems. Unfortunately we lacked time to carry out a thorough analysis of the 3D model.In order of complexity, the 2D models are:



  • 2D Model 1: Lotka – Volterra
  • Lotka-Volterra is the first (and most famous) model for prey-predator interactions and is notoriously endowed with some very appealing properties. Lotka-Volterra also was a major inspiration for the design of the molecular predation oscillator.



  • 2D Model 2: Bounded Prey Growth



  • 2D Model 3: Bounded Predator and Prey Growth
  • Bounding the growth of the preys only stabilises the system to the extent we cannot make it oscillate anymore.
  • We now seek ways to obtain oscillations by bounding the growth terms of both preys and predators.
  • Detailed Analysis for Model with Bounded Growths



The path from Lotka-Volterra to the 2D model of the Predation Oscillator


  • 2D Model 3bis: Bounded Prey Growth and Prey Killing



  • 2D Model 4: Bounded Predator and Prey Growth with Controlled Killing of Preys
  • Bounding growth and killing yielded oscillations; bounding prey and predator growths did not.
  • We now combine both previous models and get one step closer to the final system
  • Detailed Analysis for Model 4



  • Final 2D Model : 2D Model 5
  • Model 4 can be made to oscillate but also exhibits some very unrealistic properties.
  • Fortunately experimental conditions lead us to introduce a final dissipative term –eU to the derivative of the prey population.
  • We investigate the properties of this final 2D model and prove that the new dissipative term confers it some very interesting characteristics.
  • Detailed Analysis of the complete 2D Model

<html> <!-- Start of StatCounter Code --> <script type="text/javascript" language="javascript"> var sc_project=1999441; var sc_invisible=1; var sc_partition=18; var sc_security="18996820"; </script>

<script type="text/javascript" language="javascript" src="http://www.statcounter.com/counter/frames.js"></script><noscript><a href="http://www.statcounter.com/" target="_blank"><img src="http://c19.statcounter.com/counter.php?sc_project=1999441&amp;java=0&amp;security=18996820&amp;invisible=1" alt="website statistics" border="0"></a> </noscript> <!-- End of StatCounter Code --> </html>