IGEM:Harvard/2006/DNA nanostructures: Difference between revisions

From OpenWetWare
Jump to navigationJump to search
mNo edit summary
 
(46 intermediate revisions by 5 users not shown)
Line 1: Line 1:
<div class="tabs-blue">
<ul>
<li id="current">[[IGEM:Harvard/2006/DNA nanostructures|Project Overview]]</li>
<li>[[IGEM:Harvard/2006/DNA_nanostructures/Designs|Designs]]</li>
<li>[[IGEM:Harvard/2006/DNA_nanostructures/Notebook|Notebook]]</li>
<li>[[IGEM:Harvard/2006/DNA_nanostructures/Protocols|Protocols]]</li>
<li>[[IGEM:Harvard/2006/DNA_nanostructures/Presentations|Presentations]]</li>
<li>[[IGEM:Harvard/2006/DNA_nanostructures/Literature|Literature]]</li>
</ul>
</div>
<br style="clear:both">
==Project Overview==
==Project Overview==
*Our goal is to to design and implement molecular containers, which can be dynamically opened and closed by an external stimulus.
*Our goal is to design and implement molecular containers, which can be dynamically opened and closed by an external stimulus.
*The containers will be implemented as DNA nanostructures, which afford a significant degree of positional control and chemical versatility.
*The containers will be implemented as DNA nanostructures, which afford a significant degree of positional control and chemical versatility.
*As an initial proof-of-concept, we plan to use our DNA containers to demonstrate controllable activation ("delivery") of anti-thrombin aptamers.
*As an initial proof-of-concept, we plan to use our DNA containers to demonstrate controllable activation ("delivery") of anti-thrombin aptamers.
Line 12: Line 25:
**Cell sorting
**Cell sorting


==Container Specs==
==Working Team Members==
[[Image:iGEM_harv06_mattspecs.gif]]
*[[User:TChan|Tiffany Chan]] ([[User_talk:TChan|talk]], [[Special:Contributions/TChan|edits]])
*[[User:Kfifer|Katherine Fifer]] ([[User_talk:Kfifer|talk]], [[Special:Contributions/Kfifer|edits]])
*[[User:Vlau|Valerie Lau]] ([[User_talk:Vlau|talk]], [[Special:Contributions/Vlau|edits]])
*[[User:Matthewmeisel|Matthew Meisel]] ([[User_talk:Matthewmeisel|talk]], [[Special:Contributions/Matthewmeisel|edits]])
*[[User:Lhahn|Lewis Hahn]] ([[User_talk:Lhahn|talk]], [[Special:Contributions/Lhahn|edits]])
*TA: [[User:ShawnDouglas|Shawn Douglas]] ([[User_talk:ShawnDouglas|talk]], [[Special:Contributions/ShawnDouglas|edits]])


==Container Designs==
==Recent Changes==
<gallery>
{{Special:Recentchanges/b=IGEM:Harvard/2006/DNA_nanostructures/&limit=20}}
Image:Igemharv06_Katie_Val_cylinderI.gif|[[IGEM:Harvard/2006/Container Design 1|Design 1]]<br>hexagonal core, separate 1-ply lids
Image:Smallcontainerdesign2.jpg|[[IGEM:Harvard/2006/Container Design 2|Design 2]]<br>hexagonal core, separate 2-ply lids
Image:Igemharv06_msmrect.png|[[IGEM:Harvard/2006/Container Design 3|Design 3]]<br>rectangular core, continuous 1-ply lids
Image:Websmallbarrsingleply.jpg|[[IGEM:Harvard/2006/Container Design 4|Design 4]]<br>hexagonal core, separate 1-ply lids
</gallery>
 
==Coding==
===Existing code===
*[[IGEM:Harvard/2006/DNA_nanostructures/Designing_DNA_nanostructures|William's code (Python)]]
 
==Presentations==
 
===Most recent (Week 3)===
* [[Media:IGEMHarv06 Week3 presentation VKTM2.ppt|Week 3 Presentation: Design Progress]]
 
===Week 2: Original proposal===
* [[IGEM:Harvard/2006/DNA_nanostructures/Presentation_proposal|Presentation Proposal]]
 
==Working Team Members==
*[[User:TChan|Tiffany Chan]] ([[User_talk:TChan|talk]])
*[[User:Kfifer|Katherine Fifer]] ([[User_talk:Kfifer|talk]])
*[[User:Vlau|Valerie Lau]] ([[User_talk:Vlau|talk]])
*[[User:Matthewmeisel|Matthew Meisel]] ([[User_talk:Matthewmeisel|talk]])
*...and others are welcome!

Latest revision as of 18:15, 28 October 2006



Project Overview

  • Our goal is to design and implement molecular containers, which can be dynamically opened and closed by an external stimulus.
  • The containers will be implemented as DNA nanostructures, which afford a significant degree of positional control and chemical versatility.
  • As an initial proof-of-concept, we plan to use our DNA containers to demonstrate controllable activation ("delivery") of anti-thrombin aptamers.
  • We expect that molecular containers could have several interesting scientific and clinical applications, such as
    • Drug and gene delivery
    • Bio-marker scavenging (early detection of biomarkers)
    • Directed evolution (compartmentalized selections)
    • Using multiplexing for combinatorial chemical synthesis
    • Capture and stabilization of multiprotein complexes
    • Protein folding (chaperones)
    • Cell sorting

Working Team Members

Recent Changes

List of abbreviations:
N
This edit created a new page (also see list of new pages)
m
This is a minor edit
b
This edit was performed by a bot
(±123)
The page size changed by this number of bytes

18 April 2024

     15:01  Pan:Who we are diffhist +14 Taopan talk contribs
     15:00  Pan:Methods‎‎ 2 changes history +456 [Taopan‎ (2×)]
     
15:00 (cur | prev) +2 Taopan talk contribs
     
14:59 (cur | prev) +454 Taopan talk contribs
     14:56  Pan:Publications‎‎ 2 changes history +396 [Taopan‎ (2×)]
     
14:56 (cur | prev) +74 Taopan talk contribs
     
14:54 (cur | prev) +322 Taopan talk contribs
     13:03  BioMicroCenter:Pricing diffhist +166 Challee talk contribs
     12:58  BioMicroCenter:Singular Sequencing‎‎ 2 changes history +124 [Challee‎ (2×)]
     
12:58 (cur | prev) +14 Challee talk contribs (→‎Things to Consider)
     
12:57 (cur | prev) +110 Challee talk contribs
     12:12  BioMicroCenter:Tecan Freedom Evo‎‎ 7 changes history +1,746 [Noelani Kamelamela‎ (7×)]
     
12:12 (cur | prev) +4 Noelani Kamelamela talk contribs
     
12:12 (cur | prev) +3 Noelani Kamelamela talk contribs
     
10:13 (cur | prev) +7 Noelani Kamelamela talk contribs (→‎verrity Chemagic 360)
     
10:08 (cur | prev) −42 Noelani Kamelamela talk contribs (→‎verrity Chemagic 360)
     
10:08 (cur | prev) +86 Noelani Kamelamela talk contribs (→‎verrity Chemagic 360)
     
09:34 (cur | prev) +23 Noelani Kamelamela talk contribs (→‎verrity Chemagic 360)
     
09:32 (cur | prev) +1,665 Noelani Kamelamela talk contribs
     11:42  3D Cell Culture - McLean Taggart, Emma Villares, Maximillian Marek, Scott LeBlanc, Adam Lyons and Jacob Belden diffhist −3 Sarah L. Perry talk contribs
     09:35  BioMicroCenter‎‎ 2 changes history +92 [Noelani Kamelamela‎ (2×)]
     
09:35 (cur | prev) +60 Noelani Kamelamela talk contribs
     
09:20 (cur | prev) +32 Noelani Kamelamela talk contribs
     09:32 Upload log Noelani Kamelamela talk contribs uploaded File:Chemagic360.jpg(from manual)

17 April 2024

     15:34  BioMicroCenter:Element Sequencing‎‎ 3 changes history +295 [Challee‎ (3×)]
     
15:34 (cur | prev) +195 Challee talk contribs
     
14:22 (cur | prev) +100 Challee talk contribs
     
14:07 (cur | prev) 0 Challee talk contribs
     13:10  BioMicroCenter:SingleCell diffhist +30 Noelani Kamelamela talk contribs (→‎10X CHROMIUM X)
     12:43  BioMicroCenter diffhist −15 Noelani Kamelamela talk contribs

16 April 2024

N    19:59  Nanoimprint Lithography (NIL) - Carter Paul‎‎ 10 changes history +7,205 [CarterPaul‎ (10×)]
     
19:59 (cur | prev) +769 CarterPaul talk contribs (→‎Thermal NIL Process)
     
19:53 (cur | prev) 0 CarterPaul talk contribs (→‎Thermal NIL Process)
     
19:53 (cur | prev) 0 CarterPaul talk contribs (→‎Thermal NIL Process)
     
19:52 (cur | prev) +1 CarterPaul talk contribs (→‎Thermal NIL Process)
     
19:50 (cur | prev) +202 CarterPaul talk contribs (→‎Thermal NIL Process)
     
19:17 (cur | prev) −20 CarterPaul talk contribs (→‎References)
     
19:17 (cur | prev) −1 CarterPaul talk contribs
     
19:11 (cur | prev) +4,278 CarterPaul talk contribs
     
18:53 (cur | prev) +1,891 CarterPaul talk contribs
N    
18:42 (cur | prev) +85 CarterPaul talk contribs (Created page with "{{Template:CHEM-ENG590E}} =Motivation= =Introduction to NIL= =Thermal NIL Process=")
     19:40 Upload log CarterPaul talk contribs uploaded File:NIL1.png
N    18:40  3D Cell Culture - McLean Taggart, Emma Villares, Maximillian Marek, Scott LeBlanc, Adam Lyons and Jacob Belden diffhist +24,060 CarterPaul talk contribs (Created page with "{{Template:CHEM-ENG590E}} ==Introduction== While most microfluidic devices incorporate a 2D cell culture design, in which a single layer of cells is grown on the bottom of a device, these systems suffer from poor <i>in vivo</i> mimicry, as, in the human body, most cells grow in all directions.<sup>https://doi.org/10.5114/aoms.2016.63743 1</sup> To address this limitation, 3D cell culture devices have been developed - in w...")
     18:38  CHEM-ENG590E:Wiki Textbook‎‎ 2 changes history +63 [CarterPaul‎ (2×)]
     
18:38 (cur | prev) +50 CarterPaul talk contribs (→‎Chapter 1 - Microfabrication)
     
18:37 (cur | prev) +13 CarterPaul talk contribs
     18:36  3D Cell Culture - McLean Taggart, Emma Villares, Maximillian Marek, Scott LeBlanc, and Adam Lyons diffhist +5,343 CarterPaul talk contribs (Added a Technique and applications section)
     10:20  Yarn Microfluidics - Roger Dirth‎‎ 11 changes history +406 [Rcostello‎ (11×)]
     
10:20 (cur | prev) +41 Rcostello talk contribs (→‎Applications)
     
10:19 (cur | prev) +36 Rcostello talk contribs (→‎Applications)
     
10:18 (cur | prev) +36 Rcostello talk contribs (→‎Introduction)
     
10:17 (cur | prev) +38 Rcostello talk contribs (→‎Fabrication)
     
10:17 (cur | prev) +38 Rcostello talk contribs (→‎Washburn Equation)
     
10:16 (cur | prev) +38 Rcostello talk contribs (→‎Wicking Rate)
     
10:16 (cur | prev) +37 Rcostello talk contribs (→‎Introduction)
     
10:15 (cur | prev) +36 Rcostello talk contribs (→‎Wicking Rate)
     
10:14 (cur | prev) +36 Rcostello talk contribs (→‎Fabrication)
     
10:14 (cur | prev) +34 Rcostello talk contribs (→‎Applications)
     
10:14 (cur | prev) +36 Rcostello talk contribs (→‎Introduction)