Hoatlin Lab: Difference between revisions

From OpenWetWare
Jump to navigationJump to search
No edit summary
No edit summary
Line 1: Line 1:
{{HoatlinLab}}
{{HoatlinLab}}


<div style="padding: 15px; width: 710px; border: 5px solid #B3CD4E;">
<div style="padding: 1px; width: 700px; border: 3px solid #DDDDFF;">
<div style="border:1px solid orange;background-color:#FFFACD;padding:1px;">
----
'''Lab News'''
Now Inviting Applications for [[Hoatlin:Postdoc|Postdoctoral Position]]
</div>
<br>
Our laboratory is interested in understanding the molecular function of the Fanconi anemia (FA) protein network in context with other proteins that regulate or influence genomic stability. Fanconi anemia is a rare genetic disease that is typically associated with developmental abnormalities, bone marrow failure and increased risk of cancer. Because the majority of the FA proteins are unique with no significant homologies, we expect the results of our studies to shed new light on fundamental mechanisms that control the integrity of the human genome and influence cancer susceptibility.  The FA pathway is part of a network of proteins that contains BRCA2 and two other recently identified FA genes (FANCN and FANCJ) that influence breast cancer susceptibility.  Ultimately, insights into the mechanism of the FA/BRCA network of proteins will lead to an understanding of the underlying molecular defect in FA and may lead to more effective avenues of treatment for this devastating pediatric disease and cancer.  
Our laboratory is interested in understanding the molecular function of the Fanconi anemia (FA) protein network in context with other proteins that regulate or influence genomic stability. Fanconi anemia is a rare genetic disease that is typically associated with developmental abnormalities, bone marrow failure and increased risk of cancer. Because the majority of the FA proteins are unique with no significant homologies, we expect the results of our studies to shed new light on fundamental mechanisms that control the integrity of the human genome and influence cancer susceptibility.  The FA pathway is part of a network of proteins that contains BRCA2 and two other recently identified FA genes (FANCN and FANCJ) that influence breast cancer susceptibility.  Ultimately, insights into the mechanism of the FA/BRCA network of proteins will lead to an understanding of the underlying molecular defect in FA and may lead to more effective avenues of treatment for this devastating pediatric disease and cancer.  



Revision as of 23:54, 13 February 2009

Equipped with his five senses, man explores the universe around him and calls the adventure Science. ~Edwin Powell Hubble, The Nature of Science, 1954

Home        Projects        Team        Papers        Contact Us        Protocols        Collaborations        News        Reagent Requests        secret back door        Hoatlin Lab Twitter       



Lab News Now Inviting Applications for Postdoctoral Position


Our laboratory is interested in understanding the molecular function of the Fanconi anemia (FA) protein network in context with other proteins that regulate or influence genomic stability. Fanconi anemia is a rare genetic disease that is typically associated with developmental abnormalities, bone marrow failure and increased risk of cancer. Because the majority of the FA proteins are unique with no significant homologies, we expect the results of our studies to shed new light on fundamental mechanisms that control the integrity of the human genome and influence cancer susceptibility. The FA pathway is part of a network of proteins that contains BRCA2 and two other recently identified FA genes (FANCN and FANCJ) that influence breast cancer susceptibility. Ultimately, insights into the mechanism of the FA/BRCA network of proteins will lead to an understanding of the underlying molecular defect in FA and may lead to more effective avenues of treatment for this devastating pediatric disease and cancer.

We work in Portland, Oregon at OHSU, in the Department of Biochemistry & Molecular Biology and the OHSU Knight Cancer Institute.

For news, follow the Hoatlin lab Twitter

Quick Links

OHSU DNA Replication, Recombination and Repair (R3) Club.

BMB Seminar Series for 2008-2009

Advanced Topics in Molecular Biology(BMB625)

Who is Visiting Us?

Who's visiting?

<html> <a href="http://clustrmaps.com/counter/maps.php?url=http://openwetware.org/wiki/Hoatlin_Lab" id="clustrMapsLink"><img src="http://clustrmaps.com/counter/index2.php?url=http://openwetware.org/wiki/Hoatlin_Lab" border=1 alt="Locations of visitors to this page"onError="this.onError=null; this.src='http://www.meetomatic.com/images/clustrmaps-back-soon.jpg'; document.getElementById('clustrMapsLink').href='http://clustrmaps.com/'"> </a> </html>

Basic Wiki/OWW Links

<wikionly>

Recent changes
List of abbreviations:
N
This edit created a new page (also see list of new pages)
m
This is a minor edit
b
This edit was performed by a bot
(±123)
The page size changed by this number of bytes

18 April 2024

     13:03  BioMicroCenter:Pricing diffhist +166 Challee talk contribs
     12:58  BioMicroCenter:Singular Sequencing‎‎ 2 changes history +124 [Challee‎ (2×)]
     
12:58 (cur | prev) +14 Challee talk contribs (→‎Things to Consider)
     
12:57 (cur | prev) +110 Challee talk contribs
     12:12  BioMicroCenter:Tecan Freedom Evo‎‎ 7 changes history +1,746 [Noelani Kamelamela‎ (7×)]
     
12:12 (cur | prev) +4 Noelani Kamelamela talk contribs
     
12:12 (cur | prev) +3 Noelani Kamelamela talk contribs
     
10:13 (cur | prev) +7 Noelani Kamelamela talk contribs (→‎verrity Chemagic 360)
     
10:08 (cur | prev) −42 Noelani Kamelamela talk contribs (→‎verrity Chemagic 360)
     
10:08 (cur | prev) +86 Noelani Kamelamela talk contribs (→‎verrity Chemagic 360)
     
09:34 (cur | prev) +23 Noelani Kamelamela talk contribs (→‎verrity Chemagic 360)
     
09:32 (cur | prev) +1,665 Noelani Kamelamela talk contribs
     11:42  3D Cell Culture - McLean Taggart, Emma Villares, Maximillian Marek, Scott LeBlanc, Adam Lyons and Jacob Belden diffhist −3 Sarah L. Perry talk contribs
     09:35  BioMicroCenter‎‎ 2 changes history +92 [Noelani Kamelamela‎ (2×)]
     
09:35 (cur | prev) +60 Noelani Kamelamela talk contribs
     
09:20 (cur | prev) +32 Noelani Kamelamela talk contribs
     09:32 Upload log Noelani Kamelamela talk contribs uploaded File:Chemagic360.jpg(from manual)

17 April 2024

     15:34  BioMicroCenter:Element Sequencing‎‎ 3 changes history +295 [Challee‎ (3×)]
     
15:34 (cur | prev) +195 Challee talk contribs
     
14:22 (cur | prev) +100 Challee talk contribs
     
14:07 (cur | prev) 0 Challee talk contribs
     13:10  BioMicroCenter:SingleCell diffhist +30 Noelani Kamelamela talk contribs (→‎10X CHROMIUM X)
     12:43  BioMicroCenter diffhist −15 Noelani Kamelamela talk contribs

16 April 2024

N    19:59  Nanoimprint Lithography (NIL) - Carter Paul‎‎ 10 changes history +7,205 [CarterPaul‎ (10×)]
     
19:59 (cur | prev) +769 CarterPaul talk contribs (→‎Thermal NIL Process)
     
19:53 (cur | prev) 0 CarterPaul talk contribs (→‎Thermal NIL Process)
     
19:53 (cur | prev) 0 CarterPaul talk contribs (→‎Thermal NIL Process)
     
19:52 (cur | prev) +1 CarterPaul talk contribs (→‎Thermal NIL Process)
     
19:50 (cur | prev) +202 CarterPaul talk contribs (→‎Thermal NIL Process)
     
19:17 (cur | prev) −20 CarterPaul talk contribs (→‎References)
     
19:17 (cur | prev) −1 CarterPaul talk contribs
     
19:11 (cur | prev) +4,278 CarterPaul talk contribs
     
18:53 (cur | prev) +1,891 CarterPaul talk contribs
N    
18:42 (cur | prev) +85 CarterPaul talk contribs (Created page with "{{Template:CHEM-ENG590E}} =Motivation= =Introduction to NIL= =Thermal NIL Process=")
     19:40 Upload log CarterPaul talk contribs uploaded File:NIL1.png
N    18:40  3D Cell Culture - McLean Taggart, Emma Villares, Maximillian Marek, Scott LeBlanc, Adam Lyons and Jacob Belden diffhist +24,060 CarterPaul talk contribs (Created page with "{{Template:CHEM-ENG590E}} ==Introduction== While most microfluidic devices incorporate a 2D cell culture design, in which a single layer of cells is grown on the bottom of a device, these systems suffer from poor <i>in vivo</i> mimicry, as, in the human body, most cells grow in all directions.<sup>https://doi.org/10.5114/aoms.2016.63743 1</sup> To address this limitation, 3D cell culture devices have been developed - in w...")
     18:38  CHEM-ENG590E:Wiki Textbook‎‎ 2 changes history +63 [CarterPaul‎ (2×)]
     
18:38 (cur | prev) +50 CarterPaul talk contribs (→‎Chapter 1 - Microfabrication)
     
18:37 (cur | prev) +13 CarterPaul talk contribs
     18:36  3D Cell Culture - McLean Taggart, Emma Villares, Maximillian Marek, Scott LeBlanc, and Adam Lyons diffhist +5,343 CarterPaul talk contribs (Added a Technique and applications section)
     10:20  Yarn Microfluidics - Roger Dirth‎‎ 12 changes history +442 [Rcostello‎ (12×)]
     
10:20 (cur | prev) +41 Rcostello talk contribs (→‎Applications)
     
10:19 (cur | prev) +36 Rcostello talk contribs (→‎Applications)
     
10:18 (cur | prev) +36 Rcostello talk contribs (→‎Introduction)
     
10:17 (cur | prev) +38 Rcostello talk contribs (→‎Fabrication)
     
10:17 (cur | prev) +38 Rcostello talk contribs (→‎Washburn Equation)
     
10:16 (cur | prev) +38 Rcostello talk contribs (→‎Wicking Rate)
     
10:16 (cur | prev) +37 Rcostello talk contribs (→‎Introduction)
     
10:15 (cur | prev) +36 Rcostello talk contribs (→‎Wicking Rate)
     
10:14 (cur | prev) +36 Rcostello talk contribs (→‎Fabrication)
     
10:14 (cur | prev) +34 Rcostello talk contribs (→‎Applications)
     
10:14 (cur | prev) +36 Rcostello talk contribs (→‎Introduction)
     
10:13 (cur | prev) +36 Rcostello talk contribs (→‎Introduction)
     08:18  3D Printed Microfluidic Robots - Helen Hua‎‎ 2 changes history +6 [Michele Caggioni‎ (2×)]
     
08:18 (cur | prev) +22 Michele Caggioni talk contribs (→‎Actuation)
     
08:18 (cur | prev) −16 Michele Caggioni talk contribs (→‎Actuation)
     08:11  3D Printing Overview diffhist +422 Michele Caggioni talk contribs

15 April 2024

</wikionly>