Hoatlin Lab: Difference between revisions

From OpenWetWare
Jump to navigationJump to search
No edit summary
 
(48 intermediate revisions by the same user not shown)
Line 1: Line 1:
{{HoatlinLab}}
{{HoatlinLab}}


Our lab is interested in understanding how the [http://www.fanconi.org/ Fanconi anemia] proteins contribute to genomic stability with the goal of developing drugs that will help Fanconi patients and those who are susceptible to developing cancer.
<div style="padding: 15px; width: 710px; border: 5px solid #B3CD4E;">
We work in [[Hoatlin:Portland Oregon| Portland, Oregon]] at [http://www.ohsu.edu/ OHSU], in the [http://www.ohsu.edu/biochem/ Department of Biochemistry & Molecular Biology]. Our Departmental web page (not updated wiki-frequently) can be viewed [http://www.ohsu.edu/biochem/faculty/faculty.cfm?facultyID=29 here (faculty page)].
<div style="padding: 1px; width: 700px; border: 3px solid #DDDDFF;">


We hope that other Fanconi labs will join us at [http://openwetware.org/wiki/ OpenWetWare] to speed FA research, stimulate collaborative efforts, facilitate reagent distribution, and expand communication. We also believe that an understanding of the complex and enigmatic Fanconi anemia protein network could benefit from the attention of systems/synthetic biologists already on OWW.  
<div style="border:1px solid orange;background-color:#FFFACD;padding:1px;">
Please see [http://www.sciam.com/article.cfm?id=science-2-point-0-great-new-tool-or-great-risk link to Scientific American article] now online about OWW and Science 2.0.  
----
'''Lab News'''
;For news, follow the [http://twitter.com/HoatlinLab Hoatlin lab Twitter]
</div>
<br>
Our laboratory is interested in understanding the molecular function of the Fanconi anemia (FA) protein network in context with other proteins that regulate or influence genomic stability. Fanconi anemia is a rare genetic disease that is typically associated with developmental abnormalities, bone marrow failure and increased risk of cancer. Because the majority of the FA proteins are unique with no significant homologies, we expect the results of our studies to shed new light on fundamental mechanisms that control the integrity of the human genome and influence cancer susceptibility. The FA pathway is part of a network of proteins that contains BRCA2 and two other recently identified FA genes (FANCN and FANCJ) that influence breast cancer susceptibility. Ultimately, insights into the mechanism of the FA/BRCA network of proteins will lead to an understanding of the underlying molecular defect in FA and may lead to more effective avenues of treatment for this devastating pediatric disease and cancer.  


We work in [[Hoatlin:Portland Oregon| Portland, Oregon]] at [http://www.ohsu.edu/ OHSU], in the [http://www.ohsu.edu/biochem/ Department of Biochemistry & Molecular Biology] and the [http://www.ohsucancer.com/ OHSU Knight Cancer Institute].


==Bio for Maureen Hoatlin==


==Other Quick Links==
Maureen Hoatlin is an Associate Professor of Biochemistry & Molecular Biology, and Molecular & Medical Genetics at Oregon Health & Science University (OHSU).  After earning a B.S. degree in Chemistry from Old Dominion University, she was a project chemist at SRI International in Menlo Park, CA for two years, followed by six years as a research associate at Genentech, Inc. She received a Ph.D. at Oregon Health & Science University for graduate work focusing on the role of retroviruses in pathogenesis and hematopoietic cancers.  She joined the faculty in Hematology & Medical Oncology at OHSU in 1993, and was a Visiting Scientist & Professor in the Department of Genetics at the Free University and Medical Center of Amsterdam in 1998 and in 2002.  Dr. Hoatlin’s research is focused on identifying and analyzing the function of the proteins in the Fanconi Anemia/Breast Cancer (FA/BRCA) cancer susceptibility pathway.  Her work has contributed to the discovery and characterization of ten novel human genes, many with critical but poorly understood roles in hematopoiesis, cancer susceptibility (AML and other cancers), and resistance to certain commonly-used chemotherapeutic drugs. Dr. Hoatlin’s lab pioneered a cell-free approach to analyze the function of the FA/BRCA pathway and recently received a patent for a novel small molecule inhibitor screen for identification of FA/BRCA pathway inhibitors and potential chemosensitizing compounds.
[[Hoatlin:OHSU Replication, Recombination and Repair (R3) Club| OHSU DNA Replication, Recombination and Repair (R3) Club]].
 
Dr. Hoatlin has recently completed an MBA with a specialty on international business in Asia, as well a specialized UCSF course (ACDRS) on the drug development pipeline that focuses on preparation for future developments and changes in the global pharmaceutical sector. Dr. Hoatlin is a member of the strategic planning leadership for OHSU’s School of Medicine, the Hematologic Malignancies Program, advisory board member of the Oregon Translational Research and Development Institute, and founding co-chair of the OHSU Rare Disease Consortium. Dr. Hoatlin is interested in developing industry-academic partnerships aimed at using rare disease research to de-risk drug development.
 
==Teaching Links==
 
*Our lab's Fanconi Anemia antibodies are available from [http://www.novusbio.com Novus Biologicals] and by Millipore.
 
[https://openwetware.org/wiki/Hoatlin:CON606/PMCB_2018 PMCB Conjoint Class 2018-2019]
 
[[Hoatlin:OHSU_Genetic_Mechanisms_Class| Genetic Mechanisms Class (CON662)]]


[[Hoatlin:BMB Seminar Series '08-'09| BMB Seminar Series for 2008-2009 ]]
[[Hoatlin: CSF|Med Students Fundamentals]]


[[BMCB625|Advanced Topics in Molecular Biology(BMB625)]]
==Biochemistry Seminar Series==
[http://www.openwetware.org/wiki/Hoatlin:BMB_seminar_series_2017-2018 Biochemistry Seminar Series and Combined Series Working Draft]


[[Hoatlin:CON662DNA Replication|CON662 Student Space]]
==Classes of the past==
[http://www.openwetware.org/wiki/Hoatlin:CONJ606/PMCB CONJ606/PMCB 2017-2018]


==Who is Visiting Us?==
[[BMCB625|Advanced Topics in Molecular Biology(BMB625)]]


'''Who's visiting?'''
[http://openwetware.org/wiki/CANB_610 Advanced Topics in Cancer Biology (CANB 610)]


<html>
[[Hoatlin:OHSU Replication, Recombination and Repair (R3) Club| OHSU DNA Replication, Recombination and Repair (R3) Club]].
<a href="http://clustrmaps.com/counter/maps.php?url=http://openwetware.org/wiki/Hoatlin_Lab" id="clustrMapsLink"><img src="http://clustrmaps.com/counter/index2.php?url=http://openwetware.org/wiki/Hoatlin_Lab" border=1 alt="Locations of visitors to this page"onError="this.onError=null; this.src='http://www.meetomatic.com/images/clustrmaps-back-soon.jpg'; document.getElementById('clustrMapsLink').href='http://clustrmaps.com/'">
</a>
</html>
[[Image:Hoatlinclustermap.jpg]]


==Basic Wiki/OWW Links==
==Basic Wiki/OWW Links==

Latest revision as of 11:09, 11 August 2018

Equipped with his five senses, man explores the universe around him and calls the adventure Science. ~Edwin Powell Hubble, The Nature of Science, 1954

Home        Projects        Team        Papers        Contact Us        Protocols        Collaborations        News        Reagent Requests        secret back door        Hoatlin Lab Twitter       



Lab News

For news, follow the Hoatlin lab Twitter


Our laboratory is interested in understanding the molecular function of the Fanconi anemia (FA) protein network in context with other proteins that regulate or influence genomic stability. Fanconi anemia is a rare genetic disease that is typically associated with developmental abnormalities, bone marrow failure and increased risk of cancer. Because the majority of the FA proteins are unique with no significant homologies, we expect the results of our studies to shed new light on fundamental mechanisms that control the integrity of the human genome and influence cancer susceptibility. The FA pathway is part of a network of proteins that contains BRCA2 and two other recently identified FA genes (FANCN and FANCJ) that influence breast cancer susceptibility. Ultimately, insights into the mechanism of the FA/BRCA network of proteins will lead to an understanding of the underlying molecular defect in FA and may lead to more effective avenues of treatment for this devastating pediatric disease and cancer.

We work in Portland, Oregon at OHSU, in the Department of Biochemistry & Molecular Biology and the OHSU Knight Cancer Institute.

Bio for Maureen Hoatlin

Maureen Hoatlin is an Associate Professor of Biochemistry & Molecular Biology, and Molecular & Medical Genetics at Oregon Health & Science University (OHSU). After earning a B.S. degree in Chemistry from Old Dominion University, she was a project chemist at SRI International in Menlo Park, CA for two years, followed by six years as a research associate at Genentech, Inc. She received a Ph.D. at Oregon Health & Science University for graduate work focusing on the role of retroviruses in pathogenesis and hematopoietic cancers. She joined the faculty in Hematology & Medical Oncology at OHSU in 1993, and was a Visiting Scientist & Professor in the Department of Genetics at the Free University and Medical Center of Amsterdam in 1998 and in 2002. Dr. Hoatlin’s research is focused on identifying and analyzing the function of the proteins in the Fanconi Anemia/Breast Cancer (FA/BRCA) cancer susceptibility pathway. Her work has contributed to the discovery and characterization of ten novel human genes, many with critical but poorly understood roles in hematopoiesis, cancer susceptibility (AML and other cancers), and resistance to certain commonly-used chemotherapeutic drugs. Dr. Hoatlin’s lab pioneered a cell-free approach to analyze the function of the FA/BRCA pathway and recently received a patent for a novel small molecule inhibitor screen for identification of FA/BRCA pathway inhibitors and potential chemosensitizing compounds.

Dr. Hoatlin has recently completed an MBA with a specialty on international business in Asia, as well a specialized UCSF course (ACDRS) on the drug development pipeline that focuses on preparation for future developments and changes in the global pharmaceutical sector. Dr. Hoatlin is a member of the strategic planning leadership for OHSU’s School of Medicine, the Hematologic Malignancies Program, advisory board member of the Oregon Translational Research and Development Institute, and founding co-chair of the OHSU Rare Disease Consortium. Dr. Hoatlin is interested in developing industry-academic partnerships aimed at using rare disease research to de-risk drug development.

Teaching Links

  • Our lab's Fanconi Anemia antibodies are available from Novus Biologicals and by Millipore.

PMCB Conjoint Class 2018-2019

Genetic Mechanisms Class (CON662)

Med Students Fundamentals

Biochemistry Seminar Series

Biochemistry Seminar Series and Combined Series Working Draft

Classes of the past

CONJ606/PMCB 2017-2018

Advanced Topics in Molecular Biology(BMB625)

Advanced Topics in Cancer Biology (CANB 610)

OHSU DNA Replication, Recombination and Repair (R3) Club.

Basic Wiki/OWW Links

<wikionly>

Recent changes
List of abbreviations:
N
This edit created a new page (also see list of new pages)
m
This is a minor edit
b
This edit was performed by a bot
(±123)
The page size changed by this number of bytes

26 April 2024

     11:38  Hu:Publications diffhist +308 Hugangqing talk contribs
N    08:47  The Paper that Launched Microfluidics - Xi Ning‎‎ 2 changes history +16,815 [Xning098‎ (2×)]
     
08:47 (cur | prev) −1 Xning098 talk contribs (→‎Introduction)
N    
08:43 (cur | prev) +16,816 Xning098 talk contribs (Created page with "{{Template:CHEM-ENG590E}} ==Introduction== Microfluidics is the science and technology of systems that process or manipulate small (10 <sup> -18 </sup> to 10 <sup>−18 </sup> litres) amounts of fluids, using channels with dimensions of tens to hundreds of micrometres, as stated by George Whitesides. <sup> https://doi.org/10.1038/nature05058 1 </sup>. Microfluidic devices are microchemical systems such as labs on the chip, organs on the chip and plants on the chip....")
     08:43  CHEM-ENG590E:Wiki Textbook‎‎ 3 changes history 0 [Xning098‎ (3×)]
     
08:43 (cur | prev) 0 Xning098 talk contribs Tag: Manual revert
     
08:42 (cur | prev) 0 Xning098 talk contribs Tag: Manual revert
     
08:41 (cur | prev) 0 Xning098 talk contribs
     08:40  The paper that launched microfluidics - Xi Ning‎‎ 15 changes history +250 [Xning098‎ (15×)]
     
08:40 (cur | prev) +18 Xning098 talk contribs (→‎Significance)
     
08:36 (cur | prev) 0 Xning098 talk contribs (→‎Significance)
     
08:34 (cur | prev) +37 Xning098 talk contribs (→‎Significance)
     
08:31 (cur | prev) +3 Xning098 talk contribs (→‎Significance)
     
08:30 (cur | prev) +8 Xning098 talk contribs (→‎Significance)
     
08:28 (cur | prev) −31 Xning098 talk contribs (→‎Significance)
     
08:22 (cur | prev) −1 Xning098 talk contribs (→‎Electrokinetic effect)
     
08:21 (cur | prev) −2 Xning098 talk contribs (→‎Separation and quantification)
     
08:19 (cur | prev) 0 Xning098 talk contribs (→‎Sample dilution)
     
08:19 (cur | prev) 0 Xning098 talk contribs (→‎Sample dilution)
     
08:18 (cur | prev) 0 Xning098 talk contribs (→‎Separation and quantification)
     
08:17 (cur | prev) −1 Xning098 talk contribs (→‎Sample dilution)
     
08:17 (cur | prev) +1 Xning098 talk contribs
     
08:14 (cur | prev) 0 Xning098 talk contribs (→‎Microfluidic set-ups and its efficacy)
     
08:03 (cur | prev) +218 Xning098 talk contribs
     08:20  (Upload log) [Xning098‎ (6×)]
     
08:20 Xning098 talk contribs uploaded File:XiNingFigure2.jpeg
     
08:14 Xning098 talk contribs uploaded File:Figure4Drawn.XiNing.jpeg
     
08:00 Xning098 talk contribs uploaded File:DrawnFigure4XiNing.jpeg
     
07:38 Xning098 talk contribs uploaded File:XiNingDrawnSetup2.png
     
07:35 Xning098 talk contribs uploaded a new version of File:Figure 2 Set-up1.png
     
07:24 Xning098 talk contribs uploaded File:DrawnElectoosmoticflow.jpeg
     05:25  Ernesto-Perez-Rueda:Contact diffhist −94 Ernesto Perez-Rueda talk contribs

25 April 2024

     23:55  Flow and Pattern Asymmetries‎‎ 22 changes history +1,186 [Courtneychau‎ (22×)]
     
23:55 (cur | prev) −14 Courtneychau talk contribs (→‎Mixing on the Microfluidic Scale)
     
23:55 (cur | prev) −43 Courtneychau talk contribs (→‎Reynolds Number (Re))
     
23:55 (cur | prev) −46 Courtneychau talk contribs (→‎Péclet Number (Pe))
     
23:55 (cur | prev) −31 Courtneychau talk contribs (→‎Stokes Flow)
     
23:54 (cur | prev) −151 Courtneychau talk contribs (→‎Stokes Flow)
     
23:50 (cur | prev) +184 Courtneychau talk contribs (→‎References)
     
23:46 (cur | prev) 0 Courtneychau talk contribs (→‎Active Mixing Methods)
     
23:46 (cur | prev) +1 Courtneychau talk contribs (→‎Passive Mixing Methods)
     
23:45 (cur | prev) 0 Courtneychau talk contribs (→‎Chaotic Advection)
     
23:44 (cur | prev) 0 Courtneychau talk contribs (→‎Mixing on the Microfluidic Scale)
     
23:43 (cur | prev) +28 Courtneychau talk contribs (→‎Stokes Flow)
     
23:39 (cur | prev) +1 Courtneychau talk contribs (→‎Stokes Flow) Tag: Manual revert
     
23:38 (cur | prev) −1 Courtneychau talk contribs (→‎Stokes Flow)
     
23:37 (cur | prev) +11 Courtneychau talk contribs
     
23:36 (cur | prev) +15 Courtneychau talk contribs
     
23:33 (cur | prev) 0 Courtneychau talk contribs (→‎References)
     
23:30 (cur | prev) +3 Courtneychau talk contribs (→‎Passive Mixing Methods)
     
23:28 (cur | prev) −426 Courtneychau talk contribs
     
23:16 (cur | prev) +1,656 Courtneychau talk contribs (→‎References)
     
23:14 (cur | prev) 0 Courtneychau talk contribs (→‎Applications of Asymmetric Flow)
     
23:13 (cur | prev) 0 Courtneychau talk contribs (→‎Active Mixing Methods)
     
23:12 (cur | prev) −1 Courtneychau talk contribs (→‎Passive Mixing Methods)

</wikionly>