Haynes:LitReviewApr2013

From OpenWetWare

(Difference between revisions)
Jump to: navigation, search
Line 35: Line 35:
==Journal of Cell Biology==
==Journal of Cell Biology==
-
# 2013 '''Global analysis of SUMO chain function reveals multiple roles in chromatin regulation.''' Tharan Srikumar, Megan C. Lewicki, and Michael Costanzo et al. Journal of Cell Biology. 201:145-163. [http://jcb.rupress.org/content/201/1/145.full.pdf Link] Summary:  
+
# 2013 '''Global analysis of SUMO chain function reveals multiple roles in chromatin regulation.''' Tharan Srikumar, Megan C. Lewicki, and Michael Costanzo et al. Journal of Cell Biology. 201:145-163. [http://jcb.rupress.org/content/201/1/145.full.pdf Link] Summary: The paper demonstrates that the small ubiquitin-related modifier (SUMO) protein chains are required for the maintenance of normal higher-order chromatin structure and transcriptional repression of environmental stress response genes in budding yeast.

Revision as of 15:30, 15 April 2013

<- Back to Publications

Contents

Spring 2013, 04/09/13

Use the following text format...

  1. (year) Title. Author One, Author Two, and Author Three et al. Journal. Volume:pages. Link. Summary: Very short explanation of why this paper is relevant/ interesting.

  2. (2011) Engineering a Photoactivated Caspase-7 for Rapid Induction of Apoptosis. Evan Mills, Xi Chen, Elizabeth Pham, Stanley Wong, and Kevin Truong et al. ACS Synthetic Biology 2012 1.3:75-82. Link. Summary: Group from University of Toronto developed protein that causes rapid cell apotosis (cell death) of targeted cells.

Open edit mode and copy the example code above.

ACS Synthetic Biology

  1. TBA


Cell

  1. 2013 Chromatin Remodeling at DNA Double-Strand Breaks. Brendan Price, Alan D'Andrea, et al. Cell 152: 1344-1354.link. Summary: DNA double-stranded breaks can occur from natural mutations, the dysfunction of the replication for, and ionizing radiation. With the use of chromatin and nucleosome packing to potentially fix these breaks.
  1. 2013 Chromatin Movement in the Maintenance of Genome Stability. Vincent Dion, Susan Gasser, et al. Cell 152: 1355-1364. link. Summary: This article describes the use of mathematical modeling to understand and predict the random or non-random movement of chromatin.

Frontiers in Microbiotechnology

  1. TBA


Journal of Biological Engineering

  1. TBA


Journal of Cell Biology

  1. 2013 Global analysis of SUMO chain function reveals multiple roles in chromatin regulation. Tharan Srikumar, Megan C. Lewicki, and Michael Costanzo et al. Journal of Cell Biology. 201:145-163. Link Summary: The paper demonstrates that the small ubiquitin-related modifier (SUMO) protein chains are required for the maintenance of normal higher-order chromatin structure and transcriptional repression of environmental stress response genes in budding yeast.


Molecular Biology of the Cell

  1. 2012 Myosin Vs organize actin cables in fission yeast, Libera Lo Presti, Fred Chang, and Sophie G. Martin et al. Molecular Biology of the Cell. Link 23: 4579-91. Summary: Actin filaments serve as tracks for myosin motors. Evidence suggests that myosin contribute to the organization of these actin filaments. Using a synthetic biology approach, they separated the two distinct elements of cargo transport. First, They created a kinesin-myosin chimera, which delivers myosin cargoes across microtubule networks. Second, they linked the nucleus to the myosin motor traveling along actin cables partly restores cable organization. It was determined that the tethering the motor domain of Myo52 to the nucleus increases retrograde flow and cable extension. The in vivo data reveals that there is evidence of a self-organizing system in which myosin motor proteins shape their own tracks.
  1. 2011 Coiled-coil networking shapes cell molecular machinery Yongqiang Wanga, Xinlei Zhanga, Hong Zhang et al. Molecular Biology of the Cell. 23: 3911-22 Link Summary: An understanding of the coiled-coil interactions would help reveal the potential for exploration of its function and use in therapeutics. In Saccharomyces cerevisiae (yeast), it is revealed that CCI is functionally involved in cell machinery organization. CCI also plays an important role in the formation of kinetochore, which means that disruption of CCI leads to a defect in the kinetochore assembly. The study characterizes the CCI as a valuable component for shaping and regulation.

Molecular and Cellular Biology

  1. TBA


Nature

  1. (2012) Genetic programs constructed from layered logic gates in single cells Tae Seok Moon, Chunbo Lou, Alvin Tamsir, et al. Nature 491, 249–253 Link Summary: Building more challenging and bigger genetic circuits is a constant challenge for synthetic biology. Moon et al. developed a system of logical AND gates based on two input promoters regulating one output promoter. The regulatory effect is based on transcription of an activator and its needed chaperone protein. The resulting AND gates are small in metabolic load and exhibit a rather stable behavior. They developed their regulators by directed evolution based on existing parts, therefore increasing their part library should be feasible while maintaining stability and orthogonality.
  2. (2012) DAXX envelops a histone H3.3–H4 dimer for H3.3-specific recognition Simon J. Elsässer, Hongda Huang, Peter W. Lewis, et al. Nature 491, 560–565 Link Summary: The authors examined DAXX a histone chaperone involved in processing of the histone variant H3.3 prior to assembly into chromatin. For the first time the complete 3D structure of DAXX is reported including 3D structures of DAXX binding to its substrate. Further structure analysis are reported on DAXX mutations and functional binding analyses are performed in vitro and in vivo. For all these assays 3D structures are reported.
  3. (2012) Principles for designing ideal protein structures Nobuyasu Koga, Rie Tatsumi-Koga, Gaohua Liu, et al. Nature 491, 222–227 Link Summary: Until now synthetic biology is restricted to reproducing existing or modified proteins. Though it might be of future interest to design a protein de novo. Koga et al. determined from existing protein data rules that govern the formation of tertiary motifs based on secondary structures. With the help of these rules and their data mining they could compute energy landscapes of proteins. They then designed tertiary protein foldings from scratch and simulated the needed secondary structure and amino acid sequence. In vitro produced amino acid sequences did fold into the predicted tertiary structures.
  4. (2012) Synthesis: A constructive debate Jay D. Keasling, Abraham Mendoza and Phil S. Baran. Nature 492, 188–189 Link Summary: This is not a scientific article but a debate! The authors are debating on the possibility of synthetic biology to overcome synthetic chemistry as the main supplier of synthetic molecules. Keasling advocates synthetic biology by showing recent success to produce important drugs in synthetic organism cost effective and reliable from simple compounds like sugar. Though he also address issues synthetic biology has to resolve like enzyme design from scratch and more reliable pathways with high output. Mendoza and Baran therefore claim synthetic chemistry will continue to dominate production of synthetic molecules. Especially due to it's better ability to scale up, it's faster design of new compounds and it's better understood mechanism.

Nature Biotechnology

  1. TBA


Nature Methods

  1. TBA


Nature Molecular Systems Biology

  1. (2013) A fluorescent reporter for mapping cellular protein-protein interactions in time and space Daniel Moreno, Joachim Neller, Hans A Kestler, et al. Molecular Systems Biology. 9.647:1-13. Link. Summary: A group from Ulm University in Germany was able to construct a fluorescent reporter to monitor protein-protein interactions in vivo by utilizing the ratio of two auto-fluorescent proteins.

Public Library of Science Biology (PLoS Biology)

  1. TBA


Proceedings of the National Academy of Sciences (PNAS)

  1. TBA


Science

  1. TBA


Miscellaneous Reviews and Media

  1. TBA
Personal tools