Dionne: Difference between revisions

From OpenWetWare
Jump to navigationJump to search
No edit summary
No edit summary
(4 intermediate revisions by the same user not shown)
Line 6: Line 6:
That is to say, Marc Dionne's lab, at King's College London; not to be confused with any other Dionne lab.
That is to say, Marc Dionne's lab, at King's College London; not to be confused with any other Dionne lab.


We are interested in (1) the effects of host genetics on the biology of infection; and (2) cytokine signalling and its effects on immune and non-immune tissues. ''Drosophila melanogaster'' is our animal model of choice.
We are interested in (1) metabolic-immune interaction and its effects on the biology of infection; and (2) cytokine signalling and its effects on immune and non-immune tissues. ''Drosophila melanogaster'' is our animal model of choice.


Work in the lab has been funded by [http://www.bbsrc.ac.uk the Biotechnology and Biological Sciences Research Council] and [http://www.wellcome.ac.uk the Wellcome Trust].
Work in the lab has been funded by [http://www.bbsrc.ac.uk the Biotechnology and Biological Sciences Research Council], [http://www.wellcome.ac.uk the Wellcome Trust], and [http://www.mrc.ac.uk the Medical Research Council].


==Host genetics and the biology of infection==
==Metabolic-immune interaction and host genetics in infection==


Different individuals show different levels of resistance to infections and develop different pathologies in response to infections. We are interested in why this is the case. We use the fruitfly ''Drosophila melanogaster'' as a model host to study these questions; this allows us to screen for genes that affect the progress of infection in a rapid and unbiased fashion.
It has been known for centuries that chronic infections cause systemic metabolic disruption, but it is fundamentally unclear why and how these events are linked. Does metabolic disruption somehow facilitate the host response to infection? If so, how? We address these fundamental biological questions by analyzing pathogenic infections and their consequences in the fruit-fly ''Drosophila melanogaster''. We use classical ''Drosophila'' genetics, computational analysis and modeling of gene expression, biochemistry, and intravital microscopy to probe the metabolic-immune interface.


All of our experiments originate from a simple genetic screen. Mutant flies are infected with ''Mycobacterium marinum'', a bacterium closely-related to the causative agent of tuberculosis, or with ''Mycobacterium smegmatis'', a related non-pathogen. We select lines of flies that die more quickly or more slowly than wild-type controls and identify the mutation that gives rise to this phenotype. We then try to understand what this phenotype tells us about the function of the mutated gene.
One pathogen of particular interest to us is ''Mycobacterium marinum''. We have previously shown that flies infected with ''M. marinum'' exhibit progressive loss of metabolic stores accompanied by mild hyperglycemia. We have shown that these effects are caused, in part, by systemic disruption of signaling via the anabolic effector kinases Akt and p70 S6 kinase. The transcription factor MEF2 responds to nutrient signals to regulate expression of both immune effectors and anabolic enzymes. Remarkably, though MEF2 promotes the expression of both groups of genes, its choice of targets is regulated by a conserved phosphorylation that alters its affinity for the TATA binding protein. It appears that the disruption of anabolic kinase activity may be required to permit MEF2 to drive the antibacterial response. [http://www.cell.com/abstract/S0092-8674(13)01144-6 This work has recently been published in ''Cell''.]


So far, our work on this system has focused on the mechanisms of pathogenesis. We have found that this infection causes progressive loss of metabolic stores, broadly similar to the wasting seen in people with tuberculosis. We have shown that, in the fly, this wasting effect is caused partly by systemic failures in anabolic signals via the insulin effector Akt and the TOR effector p70 S6 kinase.
Ongoing work continues to explore other metabolic inputs into MEF2, other targets of MEF2 in its two discrete physiological states, and the pathways by which infection disrupts anabolic kinase activity.
 
Most recently, we have shown that the transcription factor MEF2 responds to nutrient signals to regulate expression of both immune effectors and anabolic enzymes. Remarkably, though MEF2 promotes the expression of both groups of genes, its choice of targets is regulated by a conserved phosphorylation that alters its affinity for the TATA binding protein. [http://www.cell.com/abstract/S0092-8674(13)01144-6 This work has recently been published in "Cell".]


==Cytokines and cytokine signalling==
==Cytokines and cytokine signalling==


In the course of screening, we find a lot of molecules and pathways that end up being involved in cytokine signalling and its consequences. One aspect of this is the metabolic effects of infection, which appear to result from high levels of cytokine expression over several days. Cytokines also regulate the realized immune response of the fly, much as they do in mammals.
In the course of screening for mutants with defective responses to ''M. marinum'', we find a lot of molecules and pathways that end up being involved in cytokine signalling and its consequences. Cytokines regulate the realized immune response of the fly, much as they do in mammals; they also can be significant direct drivers of pathology due to effects on immune and nonimmune target tissues. However, very little is known about the biology of cytokines in ''Drosophila melanogaster'', especially in the context of bacterial infections.


Some time back, we published some of this work in "Current Biology", showing that two different TGF-betas regulate fly immunity, each inhibiting a specific arm of the immune response, and each being produced by only a subset of phagocytes. [http://www.cell.com/current-biology/abstract/S0960-9822(11)00954-7 Check it out!]
Some time back, we showed that two different TGF-betas regulate fly immunity, each inhibiting a specific arm of the immune response, and each being produced by only a subset of phagocytes. [http://www.cell.com/current-biology/abstract/S0960-9822(11)00954-7 Check it out!] More recently, we have been analyzing the role of an interleukin-like signal in ''Mycobacterium marinum'' infection - we hope to be able to say more about this soon.


<wikionly>
<wikionly>

Revision as of 06:25, 8 August 2014

About Us       Protocols &c.       Lab Members       Publications       Contact       Links


Welcome to the Dionne lab!

That is to say, Marc Dionne's lab, at King's College London; not to be confused with any other Dionne lab.

We are interested in (1) metabolic-immune interaction and its effects on the biology of infection; and (2) cytokine signalling and its effects on immune and non-immune tissues. Drosophila melanogaster is our animal model of choice.

Work in the lab has been funded by the Biotechnology and Biological Sciences Research Council, the Wellcome Trust, and the Medical Research Council.

Metabolic-immune interaction and host genetics in infection

It has been known for centuries that chronic infections cause systemic metabolic disruption, but it is fundamentally unclear why and how these events are linked. Does metabolic disruption somehow facilitate the host response to infection? If so, how? We address these fundamental biological questions by analyzing pathogenic infections and their consequences in the fruit-fly Drosophila melanogaster. We use classical Drosophila genetics, computational analysis and modeling of gene expression, biochemistry, and intravital microscopy to probe the metabolic-immune interface.

One pathogen of particular interest to us is Mycobacterium marinum. We have previously shown that flies infected with M. marinum exhibit progressive loss of metabolic stores accompanied by mild hyperglycemia. We have shown that these effects are caused, in part, by systemic disruption of signaling via the anabolic effector kinases Akt and p70 S6 kinase. The transcription factor MEF2 responds to nutrient signals to regulate expression of both immune effectors and anabolic enzymes. Remarkably, though MEF2 promotes the expression of both groups of genes, its choice of targets is regulated by a conserved phosphorylation that alters its affinity for the TATA binding protein. It appears that the disruption of anabolic kinase activity may be required to permit MEF2 to drive the antibacterial response. This work has recently been published in Cell.

Ongoing work continues to explore other metabolic inputs into MEF2, other targets of MEF2 in its two discrete physiological states, and the pathways by which infection disrupts anabolic kinase activity.

Cytokines and cytokine signalling

In the course of screening for mutants with defective responses to M. marinum, we find a lot of molecules and pathways that end up being involved in cytokine signalling and its consequences. Cytokines regulate the realized immune response of the fly, much as they do in mammals; they also can be significant direct drivers of pathology due to effects on immune and nonimmune target tissues. However, very little is known about the biology of cytokines in Drosophila melanogaster, especially in the context of bacterial infections.

Some time back, we showed that two different TGF-betas regulate fly immunity, each inhibiting a specific arm of the immune response, and each being produced by only a subset of phagocytes. Check it out! More recently, we have been analyzing the role of an interleukin-like signal in Mycobacterium marinum infection - we hope to be able to say more about this soon.

<wikionly>

Recent updates to the lab wiki

List of abbreviations:
N
This edit created a new page (also see list of new pages)
m
This is a minor edit
b
This edit was performed by a bot
(±123)
The page size changed by this number of bytes

18 April 2024

     15:01  Pan:Who we are diffhist +14 Taopan talk contribs
     15:00  Pan:Methods‎‎ 2 changes history +456 [Taopan‎ (2×)]
     
15:00 (cur | prev) +2 Taopan talk contribs
     
14:59 (cur | prev) +454 Taopan talk contribs
     14:56  Pan:Publications‎‎ 2 changes history +396 [Taopan‎ (2×)]
     
14:56 (cur | prev) +74 Taopan talk contribs
     
14:54 (cur | prev) +322 Taopan talk contribs
     13:03  BioMicroCenter:Pricing diffhist +166 Challee talk contribs
     12:58  BioMicroCenter:Singular Sequencing‎‎ 2 changes history +124 [Challee‎ (2×)]
     
12:58 (cur | prev) +14 Challee talk contribs (→‎Things to Consider)
     
12:57 (cur | prev) +110 Challee talk contribs
     12:12  BioMicroCenter:Tecan Freedom Evo‎‎ 7 changes history +1,746 [Noelani Kamelamela‎ (7×)]
     
12:12 (cur | prev) +4 Noelani Kamelamela talk contribs
     
12:12 (cur | prev) +3 Noelani Kamelamela talk contribs
     
10:13 (cur | prev) +7 Noelani Kamelamela talk contribs (→‎verrity Chemagic 360)
     
10:08 (cur | prev) −42 Noelani Kamelamela talk contribs (→‎verrity Chemagic 360)
     
10:08 (cur | prev) +86 Noelani Kamelamela talk contribs (→‎verrity Chemagic 360)
     
09:34 (cur | prev) +23 Noelani Kamelamela talk contribs (→‎verrity Chemagic 360)
     
09:32 (cur | prev) +1,665 Noelani Kamelamela talk contribs
     11:42  3D Cell Culture - McLean Taggart, Emma Villares, Maximillian Marek, Scott LeBlanc, Adam Lyons and Jacob Belden diffhist −3 Sarah L. Perry talk contribs
     09:35  BioMicroCenter‎‎ 2 changes history +92 [Noelani Kamelamela‎ (2×)]
     
09:35 (cur | prev) +60 Noelani Kamelamela talk contribs
     
09:20 (cur | prev) +32 Noelani Kamelamela talk contribs
     09:32 Upload log Noelani Kamelamela talk contribs uploaded File:Chemagic360.jpg(from manual)

17 April 2024

     15:34  BioMicroCenter:Element Sequencing‎‎ 3 changes history +295 [Challee‎ (3×)]
     
15:34 (cur | prev) +195 Challee talk contribs
     
14:22 (cur | prev) +100 Challee talk contribs
     
14:07 (cur | prev) 0 Challee talk contribs
     13:10  BioMicroCenter:SingleCell diffhist +30 Noelani Kamelamela talk contribs (→‎10X CHROMIUM X)
     12:43  BioMicroCenter diffhist −15 Noelani Kamelamela talk contribs

16 April 2024

N    19:59  Nanoimprint Lithography (NIL) - Carter Paul‎‎ 10 changes history +7,205 [CarterPaul‎ (10×)]
     
19:59 (cur | prev) +769 CarterPaul talk contribs (→‎Thermal NIL Process)
     
19:53 (cur | prev) 0 CarterPaul talk contribs (→‎Thermal NIL Process)
     
19:53 (cur | prev) 0 CarterPaul talk contribs (→‎Thermal NIL Process)
     
19:52 (cur | prev) +1 CarterPaul talk contribs (→‎Thermal NIL Process)
     
19:50 (cur | prev) +202 CarterPaul talk contribs (→‎Thermal NIL Process)
     
19:17 (cur | prev) −20 CarterPaul talk contribs (→‎References)
     
19:17 (cur | prev) −1 CarterPaul talk contribs
     
19:11 (cur | prev) +4,278 CarterPaul talk contribs
     
18:53 (cur | prev) +1,891 CarterPaul talk contribs
N    
18:42 (cur | prev) +85 CarterPaul talk contribs (Created page with "{{Template:CHEM-ENG590E}} =Motivation= =Introduction to NIL= =Thermal NIL Process=")
     19:40 Upload log CarterPaul talk contribs uploaded File:NIL1.png
N    18:40  3D Cell Culture - McLean Taggart, Emma Villares, Maximillian Marek, Scott LeBlanc, Adam Lyons and Jacob Belden diffhist +24,060 CarterPaul talk contribs (Created page with "{{Template:CHEM-ENG590E}} ==Introduction== While most microfluidic devices incorporate a 2D cell culture design, in which a single layer of cells is grown on the bottom of a device, these systems suffer from poor <i>in vivo</i> mimicry, as, in the human body, most cells grow in all directions.<sup>https://doi.org/10.5114/aoms.2016.63743 1</sup> To address this limitation, 3D cell culture devices have been developed - in w...")
     18:38  CHEM-ENG590E:Wiki Textbook‎‎ 2 changes history +63 [CarterPaul‎ (2×)]
     
18:38 (cur | prev) +50 CarterPaul talk contribs (→‎Chapter 1 - Microfabrication)
     
18:37 (cur | prev) +13 CarterPaul talk contribs
     18:36  3D Cell Culture - McLean Taggart, Emma Villares, Maximillian Marek, Scott LeBlanc, and Adam Lyons diffhist +5,343 CarterPaul talk contribs (Added a Technique and applications section)
     10:20  Yarn Microfluidics - Roger Dirth‎‎ 11 changes history +406 [Rcostello‎ (11×)]
     
10:20 (cur | prev) +41 Rcostello talk contribs (→‎Applications)
     
10:19 (cur | prev) +36 Rcostello talk contribs (→‎Applications)
     
10:18 (cur | prev) +36 Rcostello talk contribs (→‎Introduction)
     
10:17 (cur | prev) +38 Rcostello talk contribs (→‎Fabrication)
     
10:17 (cur | prev) +38 Rcostello talk contribs (→‎Washburn Equation)
     
10:16 (cur | prev) +38 Rcostello talk contribs (→‎Wicking Rate)
     
10:16 (cur | prev) +37 Rcostello talk contribs (→‎Introduction)
     
10:15 (cur | prev) +36 Rcostello talk contribs (→‎Wicking Rate)
     
10:14 (cur | prev) +36 Rcostello talk contribs (→‎Fabrication)
     
10:14 (cur | prev) +34 Rcostello talk contribs (→‎Applications)
     
10:14 (cur | prev) +36 Rcostello talk contribs (→‎Introduction)

</wikionly>

<nonwikionly> This page was created using Open Wetware.</nonwikionly>