David Lowry: Difference between revisions

From OpenWetWare
Jump to navigationJump to search
No edit summary
(455 intermediate revisions by 4 users not shown)
Line 1: Line 1:
==About me==
Michigan State University: Assistant Professor                        2014-Present
I am a second year graduate student in [http://www.biology.duke.edu/willislab/ Dr. Johh Willis' lab] at [http://www.duke.edu Duke].  You can check out a summary of my [http://upg.duke.edu/studentlife/lowry.html current research] in the [http://upg.duke.edu/ University Program in Genetics and Genomics]


==The Mimulus Community==
California State University, Monterey Bay: Assistant Professor          2014


*[http://www.biology.duke.edu/willislab/labpeople.htm John Willis]
The University of Texas at Austin: USDA NIFA Postdoctoral Fellow,    2010-2013
*[http://dbs.umt.edu/personnel/faculty/lila_fishman.htm Lila Fishman]
*[http://faculty.washington.edu/toby/ Toby Bradshaw]
*[http://www.genetics.forestry.ubc.ca/ritland/ Kermit Ritland]
*[http://www.plantbiology.msu.edu/schemske.shtml Doug Schemske]
*[http://www.ubcbotanicalgarden.org/research/cronk.php Quentin Cronk]
*[http://purugganan.gnets.ncsu.edu/people/people.html Megan Hall]
*[http://www.isu.edu/~bearpau2/ Paul Beardsley]
*[http://www.biology.utah.edu/faculty2.php?inum=49 Bob Vickery]


==Mimulus web sites==
Duke University:                          PhD,                        2004-2010


*Mark MacNair's collection of strange [http://www.ex.ac.uk/~MRMacnai/guttatus.html Mimulus guttatus relatives] from California
The University of California, Berkeley:   BS,                        1997-2001
*The Willis Lab is quite excited about the release of the whole genome of [http://www.jgi.doe.gov/sequencing/why/CSP2006/mimulus.html Mimulus guttatus] next summer.  Updates are avaliable on the Clemson University Genomics Institute [http://www.genome.clemson.edu/projects/mimulus/ website].


==Research Interests==


==Field Sites==
[[Image:Perdenales.jpg|thumb|left|Switchgrass in its native riparian habitat in central Texas]]
[[Image:Lowry_field_2.JPG|thumb|right|Field experiment with ''Mimulus guttatus'']]


===United States===
'''The genetics of adaptation and speciation'''
*[http://www.parks.ca.gov/default.asp?page_id=592 Montana de Oro State Park]
*[http://www.redshift.com/~bigcreek/ Big Creek Reserve]
*[http://www-bml.ucdavis.edu/ Bodega Marine Lab]
*[http://nrs.ucop.edu/Reserves/Angelo/Angelolinkingpage.html Angelo Reserve]
*[http://www.nps.gov/redw/ Redwood National Park]
*[http://www.oregonstateparks.org/park_197.php Saddle Mountain]


===Canada===
Adaptation is the most fundamental way that the environment can change the phenotypes of organisms.   Adaptations can also lead to the formation of reproductive isolating barriers, which are the building blocks of new species. I am very interested in understanding the genetic underpinnings of reproductive isolation at various stages in the speciation process.
*[http://www.pc.gc.ca/pn-np/bc/gwaiihaanas/index_e.asp Gwaii Haanas]
*[http://www.bms.bc.ca/ Bamfield Marine Science Center]
*[http://www.pc.gc.ca/pn-np/bc/pacificrim/index_e.asp Pacific Rim National Park]


==Friends==
Understanding adaptation is also crucial to predicting how organisms will respond to future global change and will help inform management decisions as well as guide future agricultural breeding.


[[Sri Kosuri|Sri Kosuri]]
'''Landscape evolutionary genomics'''


"There is keen delight in the quick experience, of knowing that no harm comes of a wetting at high canon wall, slips up behind the ridge to cross it by some windy broad-leaved hellebore, and beat down the mimulus beside the brook."
One of the core goals of my research program is to understand how the natural landscape molds the genomes of organisms through adaptation.  To that end, I am using a combination of genetic mapping and genome sequencing approaches to identify genes involved with adaptation to the heterogeneity of the natural landscape.  During my dissertation, I focused on how adaptive alleles in ''Mimulus guttatus'' are spread across the landscape and what phenotypic effects they have in different environments across western North America.  Currently, I am developing ''Panicum'' grasses as a model system to understand adaptation along a longitudinal soil moisture cline across Southwestern United States and a latitudinal temperature cline across the Great Plains. Our lab recently [http://www.utexas.edu/news/2012/08/02/biologist-grant-study-potential-biofuel-crops/ received funding from the Department of Energy] to develop ''Panicum hallii'' as a model system for local adaptation and bioenergy research. 
              -Mary Austin
 
[[Image:Diversity.JPG|thumb|left|Phenotypic diversity of Switchgrass, ''Panicum virgatum'']]
[[Image:Field_2012.JPG|thumb|right|Field experiment with ''Panicum hallii'']]
 
'''Using evolutionary biology to improve bioenergy crops'''
 
Civilization is built on a foundation of domesticated grasses.  Without those grasses (corn, wheat, rice, oats, barley, sorghum) there would be no ballet and human beings would never of landed on the moon.  Plant breeders have quietly worked in the shadows to increase the yield of crops and in turn maintain our modern world.
 
Now, there may actually be potential to domesticate a new set of grass species to use to help combat the growing energy problem.  My research is focused understanding the factors involved in local adaptation in the bioenergy crop switchgrass (''Panicum virgatum'').  Loci involved in local adaptation are likely to be of high value to crop breeders interested in improving drought, heat, cold, herbivore, and disease tolerance.
 
==Publications==
 
[[Image:PLoS.jpg|thumb|left|Cover photo for PLoS Biology]]
 
[[Image:PhilTransCover.jpg|thumb|right|]]
 
'''PDFs for publications available through my''' [http://davidbryantlowry.wordpress.com/publications/ '''website''']
 
Aspinwall, M. J., S. H. Taylor, '''D. B. Lowry''', P. A. Fay, A. Khasanova, J. Bonnette, B. K. Whitaker, N. S. Johnson, C. V. Hawkes, T. E. Juenger. Physiological plasticity among differentially adapted genotypes of a widespread C4 grass under altered precipitation. ''In review''
 
'''Lowry, D. B.''', K. Hernandez, S. H. Taylor, E. Meyer, T. L. Logan, J. A. Chapman, D. S. Rokhsar, J. Schmutz, T. E. Juenger. (2014) The genetics of divergence and reproductive isolation between ecotypes of ''Panicum hallii''. New Pytologist. ''In press''
 
Meyer, E., M. J. Aspinwall, '''D. B. Lowry''', J. Palacio-Mejía, T. L. Logan, P. A. Fay, T. E. Juenger. (2014) Integrating physiological, transcriptional, and metabolomic responses to drought stress and recovery in switchgrass (''Panicum virgatum'' L.). BMC Genomics. ''In press''
 
[http://mbe.oxfordjournals.org/content/early/2014/05/21/molbev.msu170.abstract Lasky, J. R., D. L. Des Marais, '''D. B. Lowry''', I. Povolotskaya, J. K. McKay, J. H. Richards, T. H. Keitt, T. E. Juenger. (2014) Natural variation in abiotic stress responsive gene expression is associated with local adaptation to climate in ''Arabidopsis thaliana.'' Molecular Biology and Evolution ''In press'']
 
[http://onlinelibrary.wiley.com/doi/10.1111/mec.12778/abstract Oneal, E., '''D. B. Lowry''', K. M. Wright, Z. Zhu, J. H. Willis. (2014) Divergent population structure and climate associations of a chromosomal inversion polymorphism across the ''Mimulus guttatus'' species complex. Molecular Ecology. ''In press'']
 
[http://www.amnat.org/an/newpapers/VPLowry.html '''Lowry, D. B.''', K. D. Behrman, P. Grabowski, G. P. Morris, J. R. Kiniry, T. E. Juenger. (2014)  Adaptation between ecotypes and along environmental gradients in ''Panicum virgatum.'' The American Naturalist. 183: 682-692.]
 
[http://www.plantcell.org/content/early/2013/09/16/tpc.113.115352.short?keytype=ref&ijkey=6c6d7ZU4jKR8aPZ '''Lowry, D. B.''', T. L. Logan, L. Santuari, C. S. Hardtke, J. H. Richards, L. J. DeRose-Wilson, J. K. McKay, S. Sen, T. E. Juenger. (2013) Expression QTL mapping across water availability environments reveals contrasting associations with genomic features in ''Arabidopsis thaliana''. The Plant Cell 25: 3266–3279.]
 
[http://press.princeton.edu/titles/10100.html '''Lowry, D. B.''', R. Hopkins. (2013) “Speciation and Natural Selection.” In J. Losos (ed.). The Princeton Guide to Evolution. Pp. 512-519. Princeton University Press, Princeton, NJ, USA.]
 
[http://onlinelibrary.wiley.com/doi/10.1111/nph.12341/abstract Aspinwall, M. J., '''D. B. Lowry''', S. H. Taylor, T. E. Juenger, C. V. Hawkes, M. V. Johnson, J. R. Kiniry, P. A. Fay. (2013) Genotypic variation in traits linked to climate and aboveground productivity in a widespread C4 grass: evidence for a functional trait syndrome. New Phytologist 199: 966-980.] 
 
[http://www.plosbiology.org/article/info%3Adoi%2F10.1371%2Fjournal.pbio.1001497 Wright, K. M., D. Lloyd, '''D. B. Lowry''', M. R. Macnair, J. H. Willis. (2013) Indirect evolution of hybrid lethality due to linkage with a selected locus in ''Mimulus guttatus.'' PLoS Biology 11: e1001497] 
 
[http://www.amjbot.org/content/early/2013/02/19/ajb.1200379.abstract '''Lowry, D. B.''', C. T. Purmal, T. E. Juenger. (2013) A population genetic transect of ''Panicum hallii'' (Poaceae). American Journal of Botany. 100:592-601]
 
[http://onlinelibrary.wiley.com/doi/10.1111/j.1469-8137.2012.04146.x/full '''Lowry D. B.''' (2012) Local adaptation in The model plant.  New Phytologist. 194: 888-890.]
 
[http://onlinelibrary.wiley.com/doi/10.1111/j.1095-8312.2012.01867.x/full '''Lowry, D. B.''' (2012) Ecotypes and the controversy over stages in the formation of new species. Biological Journal of the Linnean Society. 106: 241-257.]
 
[http://www.amjbot.org/content/99/3/e114.long '''Lowry, D. B.''', C. T. Purmal, E. Meyer, T. E. Juenger. (2012) Microsatellite markers for the native Texas perennial grass,  ''Panicum hallii'' (Poaceae).  American Journal of Botany Primer Notes & Protocols. 99: e114-e116]
 
[http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0030730 '''Lowry, D. B.''', C. S. Sheng, Z. Zhu, T. E. Juenger, B. Lahner, D. E. Salt, J. H. Willis. (2012) Mapping of ionomic traits in ''Mimulus guttatus'' reveals Mo and Cd QTLs that colocalize with MOT1 homologues.  PLoS One 7: e30730.]
 
[http://www.amjbot.org/content/early/2011/12/20/ajb.1100285.abstract '''Lowry, D. B.''', C. S. Sheng,, J. R. Lasky, J.H. Willis.  (2012) Five anthocyanin polymorphisms are associated with an R2R3-MYB cluster in ''Mimulus guttatus''.  American Journal of Botany 99:82-91]
 
[http://www.plosbiology.org/article/info%3Adoi%2F10.1371%2Fjournal.pbio.1000500 '''Lowry, D.B.,''' J. H. Willis. (2010) A widespread chromosomal inversion polymorphism contributes to a major life-history transition, local adaptation, and reproductive isolation.  PLoS Biology 8: e1000500]
 
[http://www3.interscience.wiley.com/journal/123501089/abstract Hall, M. C., '''D. B. Lowry''', J. H. Willis.  (2010).  Is local adaptation in ''Mimulus guttatus'' caused by trade-offs at individual loci?  Molecular Ecology.  19: 2739-2753]
 
[http://rsbl.royalsocietypublishing.org/content/early/2010/01/22/rsbl.2009.0969.full '''Lowry, D. B.''' (2010) Landscape evolutionary genomics.  Biology Letters. 6: 502-504]
 
[[Image:Evolution_cover.jpg|thumb|right|]]
 
[http://www.springerlink.com/content/vm4456721023284g/ Wu, C. A., '''D. B. Lowry''', L. I. Nutter, J. H. Willis.  (2010)  Natural variation for drought response in the ''Mimulus guttatus'' species complex.  Oecologia 162: 23-33]
 
[http://www3.interscience.wiley.com/journal/122462935/abstract '''Lowry, D. B.''', M. C. Hall, D. E. Salt, J. H. Willis. (2009). Genetic and physiological basis of adaptive salt tolerance divergence between coastal and inland ''Mimulus guttatus.''  New Phytologist  183: 776-788]
 
[http://rstb.royalsocietypublishing.org/content/363/1506/3009.long '''Lowry, D. B.''', J. L. Modliszewski, K. M. Wright, C. A. Wu, J. H. Willis.  (2008).  The strength and genetic basis of reproductive isolating barriers in flowering plants. Philosophical Transactions of the Royal Society B 363: 3009-3021]
 
[http://www3.interscience.wiley.com/journal/120775240/abstract '''Lowry, D. B.''', R. C. Rockwood, J. H. Willis.  (2008).  Ecological reproductive isolation of coast and inland races of ''Mimulus guttatus''. Evolution 62: 2196-2214]
 
[http://www.nature.com/hdy/journal/v100/n2/abs/6801018a.html Wu, C. A., '''D. B. Lowry''', A. M. Cooley, K. M. Wright, Y. W. Lee, and J. H. Willis.  (2008).  ''Mimulus'' is an emerging model system for the integration of ecological and genomic studies.  Heredity 100: 220-230.]
 
==Important Things==
 
*[http://davidbryantlowry.wordpress.com/ My website]
 
*[http://lowrylab.wordpress.com/david-lowry-cv/ David Lowry CV]
 
*[http://scholar.google.com/citations?view_op=list_works&hl=en&user=yp5xdBEAAAAJ&gmla=AJsN-F6DFaPZ9A0TNBwOFnsWZf9Y9S7rGntDIzs1ZOqg52GhHzGJ090M-xxUubHEHF3dyXE6XlN-jmJ1uYNJiAULSHsEkKAaqniu606ZwKxaDjIwB3wfiIkspwU-gntSRaYs7bNl5Mmy Google Scholar Citations ]
 
*[https://github.com/davidbryantlowry Programming Scripts on Github]
 
*'''Contact Info:''' You can contact me at davidbryantlowry@gmail.com.
 
*Make sure to check out the [[Mimulus Community]] and the [[Texas Switchgrass Collaborative]].

Revision as of 18:34, 22 August 2014

Michigan State University: Assistant Professor 2014-Present

California State University, Monterey Bay: Assistant Professor 2014

The University of Texas at Austin: USDA NIFA Postdoctoral Fellow, 2010-2013

Duke University: PhD, 2004-2010

The University of California, Berkeley: BS, 1997-2001

Research Interests

Switchgrass in its native riparian habitat in central Texas
Field experiment with Mimulus guttatus

The genetics of adaptation and speciation

Adaptation is the most fundamental way that the environment can change the phenotypes of organisms. Adaptations can also lead to the formation of reproductive isolating barriers, which are the building blocks of new species. I am very interested in understanding the genetic underpinnings of reproductive isolation at various stages in the speciation process.

Understanding adaptation is also crucial to predicting how organisms will respond to future global change and will help inform management decisions as well as guide future agricultural breeding.

Landscape evolutionary genomics

One of the core goals of my research program is to understand how the natural landscape molds the genomes of organisms through adaptation. To that end, I am using a combination of genetic mapping and genome sequencing approaches to identify genes involved with adaptation to the heterogeneity of the natural landscape. During my dissertation, I focused on how adaptive alleles in Mimulus guttatus are spread across the landscape and what phenotypic effects they have in different environments across western North America. Currently, I am developing Panicum grasses as a model system to understand adaptation along a longitudinal soil moisture cline across Southwestern United States and a latitudinal temperature cline across the Great Plains. Our lab recently received funding from the Department of Energy to develop Panicum hallii as a model system for local adaptation and bioenergy research.

Phenotypic diversity of Switchgrass, Panicum virgatum
Field experiment with Panicum hallii

Using evolutionary biology to improve bioenergy crops

Civilization is built on a foundation of domesticated grasses. Without those grasses (corn, wheat, rice, oats, barley, sorghum) there would be no ballet and human beings would never of landed on the moon. Plant breeders have quietly worked in the shadows to increase the yield of crops and in turn maintain our modern world.

Now, there may actually be potential to domesticate a new set of grass species to use to help combat the growing energy problem. My research is focused understanding the factors involved in local adaptation in the bioenergy crop switchgrass (Panicum virgatum). Loci involved in local adaptation are likely to be of high value to crop breeders interested in improving drought, heat, cold, herbivore, and disease tolerance.

Publications

Cover photo for PLoS Biology

PDFs for publications available through my website

Aspinwall, M. J., S. H. Taylor, D. B. Lowry, P. A. Fay, A. Khasanova, J. Bonnette, B. K. Whitaker, N. S. Johnson, C. V. Hawkes, T. E. Juenger. Physiological plasticity among differentially adapted genotypes of a widespread C4 grass under altered precipitation. In review

Lowry, D. B., K. Hernandez, S. H. Taylor, E. Meyer, T. L. Logan, J. A. Chapman, D. S. Rokhsar, J. Schmutz, T. E. Juenger. (2014) The genetics of divergence and reproductive isolation between ecotypes of Panicum hallii. New Pytologist. In press

Meyer, E., M. J. Aspinwall, D. B. Lowry, J. Palacio-Mejía, T. L. Logan, P. A. Fay, T. E. Juenger. (2014) Integrating physiological, transcriptional, and metabolomic responses to drought stress and recovery in switchgrass (Panicum virgatum L.). BMC Genomics. In press

Lasky, J. R., D. L. Des Marais, D. B. Lowry, I. Povolotskaya, J. K. McKay, J. H. Richards, T. H. Keitt, T. E. Juenger. (2014) Natural variation in abiotic stress responsive gene expression is associated with local adaptation to climate in Arabidopsis thaliana. Molecular Biology and Evolution In press

Oneal, E., D. B. Lowry, K. M. Wright, Z. Zhu, J. H. Willis. (2014) Divergent population structure and climate associations of a chromosomal inversion polymorphism across the Mimulus guttatus species complex. Molecular Ecology. In press

Lowry, D. B., K. D. Behrman, P. Grabowski, G. P. Morris, J. R. Kiniry, T. E. Juenger. (2014) Adaptation between ecotypes and along environmental gradients in Panicum virgatum. The American Naturalist. 183: 682-692.

Lowry, D. B., T. L. Logan, L. Santuari, C. S. Hardtke, J. H. Richards, L. J. DeRose-Wilson, J. K. McKay, S. Sen, T. E. Juenger. (2013) Expression QTL mapping across water availability environments reveals contrasting associations with genomic features in Arabidopsis thaliana. The Plant Cell 25: 3266–3279.

Lowry, D. B., R. Hopkins. (2013) “Speciation and Natural Selection.” In J. Losos (ed.). The Princeton Guide to Evolution. Pp. 512-519. Princeton University Press, Princeton, NJ, USA.

Aspinwall, M. J., D. B. Lowry, S. H. Taylor, T. E. Juenger, C. V. Hawkes, M. V. Johnson, J. R. Kiniry, P. A. Fay. (2013) Genotypic variation in traits linked to climate and aboveground productivity in a widespread C4 grass: evidence for a functional trait syndrome. New Phytologist 199: 966-980.

Wright, K. M., D. Lloyd, D. B. Lowry, M. R. Macnair, J. H. Willis. (2013) Indirect evolution of hybrid lethality due to linkage with a selected locus in Mimulus guttatus. PLoS Biology 11: e1001497

Lowry, D. B., C. T. Purmal, T. E. Juenger. (2013) A population genetic transect of Panicum hallii (Poaceae). American Journal of Botany. 100:592-601

Lowry D. B. (2012) Local adaptation in The model plant. New Phytologist. 194: 888-890.

Lowry, D. B. (2012) Ecotypes and the controversy over stages in the formation of new species. Biological Journal of the Linnean Society. 106: 241-257.

Lowry, D. B., C. T. Purmal, E. Meyer, T. E. Juenger. (2012) Microsatellite markers for the native Texas perennial grass,  Panicum hallii (Poaceae). American Journal of Botany Primer Notes & Protocols. 99: e114-e116

Lowry, D. B., C. S. Sheng, Z. Zhu, T. E. Juenger, B. Lahner, D. E. Salt, J. H. Willis. (2012) Mapping of ionomic traits in Mimulus guttatus reveals Mo and Cd QTLs that colocalize with MOT1 homologues. PLoS One 7: e30730.

Lowry, D. B., C. S. Sheng,, J. R. Lasky, J.H. Willis. (2012) Five anthocyanin polymorphisms are associated with an R2R3-MYB cluster in Mimulus guttatus. American Journal of Botany 99:82-91

Lowry, D.B., J. H. Willis. (2010) A widespread chromosomal inversion polymorphism contributes to a major life-history transition, local adaptation, and reproductive isolation. PLoS Biology 8: e1000500

Hall, M. C., D. B. Lowry, J. H. Willis. (2010). Is local adaptation in Mimulus guttatus caused by trade-offs at individual loci? Molecular Ecology. 19: 2739-2753

Lowry, D. B. (2010) Landscape evolutionary genomics. Biology Letters. 6: 502-504

Wu, C. A., D. B. Lowry, L. I. Nutter, J. H. Willis. (2010) Natural variation for drought response in the Mimulus guttatus species complex. Oecologia 162: 23-33

Lowry, D. B., M. C. Hall, D. E. Salt, J. H. Willis. (2009). Genetic and physiological basis of adaptive salt tolerance divergence between coastal and inland Mimulus guttatus. New Phytologist 183: 776-788

Lowry, D. B., J. L. Modliszewski, K. M. Wright, C. A. Wu, J. H. Willis. (2008). The strength and genetic basis of reproductive isolating barriers in flowering plants. Philosophical Transactions of the Royal Society B 363: 3009-3021

Lowry, D. B., R. C. Rockwood, J. H. Willis. (2008). Ecological reproductive isolation of coast and inland races of Mimulus guttatus. Evolution 62: 2196-2214

Wu, C. A., D. B. Lowry, A. M. Cooley, K. M. Wright, Y. W. Lee, and J. H. Willis. (2008). Mimulus is an emerging model system for the integration of ecological and genomic studies. Heredity 100: 220-230.

Important Things

  • Contact Info: You can contact me at davidbryantlowry@gmail.com.