DIYbio/FAQ: Difference between revisions

From OpenWetWare
Jump to navigationJump to search
(more edits to replace thread link)
Line 257: Line 257:


=== How do you purify agar? ===
=== How do you purify agar? ===
:"here is a good washed agar protocol, cleans up contaminants. It involves acetone, easy to find at home depot, but dont be smoking. Also the washed agar will gel at a lower concentration, 1% instead of 1.5% or 2%. As store bought stuff is less pure than Difco, it would certainly benefit more from cleaning. I have only done the second protocol."  http://www.fgsc.net/neurosporaprotocols/How%20to%20wash%20agar.pdf -- Tom on the diybio google group
* [http://groups.google.com/group/diybio/browse_thread/thread/3d7e7d6424e0d2a6/bbab3ffcb5b7913e agar purification recipes]
* [http://groups.google.com/group/diybio/browse_thread/thread/3d7e7d6424e0d2a6/bbab3ffcb5b7913e agar purification recipes]



Revision as of 09:40, 16 September 2009

DIYbio FAQ v1.1: "The biohacker's FAQ"

Please update this FAQ mercilessly with Q&A !


This Frequently Asked Questions document is for the DIYBio mailing list.


FAQ Revision History

  • 1.0 - copied on 4/7/2009 from heybryan.org...DIYbio_FAQ
  • 1.1 - some updates to clarify original version
  • 1.2 - new sections, add papar about agar DOI:10.1007/BF00152620 --jcline@ieee.org 12:28, 16 September 2009 (EDT)

What is DIYbio, as an organization?

DIYbio is an organization that aims to help make biology a worthwhile pursuit for citizen scientists, amateur biologists, and DIY biological engineers who value openness and safety. This will require mechanisms for amateurs to increase their knowledge and skills, access to a community of experts, the development of a code of ethics, responsible oversight, and leadership on issues that are unique to doing biology outside of traditional professional settings.


DIYbio is a distributed community of amateur biologists (or bioengineers) and professional biologists (or bioengineers). Our activities range across a broad spectrum, from molecular naturalism (sequencing part of your own genome or bacterial populations) to biological engineering (RFP lactobacillus -> melanometer) to building low-cost, open-source alternative lab equipment (Gel Box 2.0).


<html> <div style="float:left;"><object width="560" height="315"><param name="allowfullscreen" value="true" /><param name="allowscriptaccess" value="always" /><param name="movie" value="http://vimeo.com/moogaloop.swf?clip_id=3454392&amp;server=vimeo.com&amp;show_title=1&amp;show_byline=1&amp;show_portrait=0&amp;color=00ADEF&amp;fullscreen=1" /><embed src="http://vimeo.com/moogaloop.swf?clip_id=3454392&amp;server=vimeo.com&amp;show_title=1&amp;show_byline=1&amp;show_portrait=0&amp;color=00ADEF&amp;fullscreen=1" type="application/x-shockwave-flash" allowfullscreen="true" allowscriptaccess="always" width="560" height="315"></embed></object><br /><a href="http://vimeo.com/3454392">The DIYbio Community - Presented at Ignite Boston 5 (2009)</a> from <a href="http://vimeo.com/macowell">mac cowell</a> on <a href="http://vimeo.com">Vimeo</a>.<br /><br /></div> <object width="560" height="340" style="float:left;"><param name="movie" value="http://www.youtube.com/v/-IIWH6Hhcnc&hl=en&fs=1&rel=0"></param><param name="allowFullScreen" value="true"></param><param name="allowscriptaccess" value="always"></param><embed src="http://www.youtube.com/v/-IIWH6Hhcnc&hl=en&fs=1&rel=0" type="application/x-shockwave-flash" allowscriptaccess="always" allowfullscreen="true" width="560" height="340"></embed></object> <div style="clear:both"> </div><br /> </html>


What is DIYbio's mission?

Are we moving to a future where everyone performs a little genetic engineering?

Who is a "biohacker"?

How can I get involved?

Many ways! Here's a brief overview:

So far, we mainly communicate through the mailing list. There is also a lower volume DIYbio announce mailing list, which occassionally has announcements that the community might be interested in. Also, there are groups for:

You're welcome to subscribe to the mailing lists- in fact, we encourage it. Follow conventional netiquette rules. Historically, the main DIYbio mailing list hasn't really set its foot down regarding top versus bottom posting (or even side posting or diagonal posting). Please do be kind and trim your replies. Meredith also asks that users change the subject of their emails when they hijack a thread. Thanks.

There are other forums:

Is there a group in my area?

There's probably a group nearby- maybe at least somebody somewhat interested in getting together for lunch or maybe sitting down over a bench and doing serious experiments- at any rate, you can find out about those near you by checking out the map below or diybio.org/local.

<html> <iframe width="575" height="350" frameborder="0" scrolling="no" marginheight="0" marginwidth="0" src="http://maps.google.com/maps/ms?ie=UTF8&amp;hl=en&amp;msa=0&amp;ll=42.358163,0.0&amp;z=1&amp;spn=0,0&amp;msid=117373025318808082442.00045fd549f07830e0465&amp;output=embed&amp;s=AARTsJqk9drOPzgJzPIckjwHnoC0bQwDAA"></iframe><br />

<a href="http://maps.google.com/maps/ms?ie=UTF8&amp;hl=en&amp;msa=0&amp;ll=42.358163,0.0&amp;z=2&amp;spn=0,0&amp;msid=117373025318808082442.00045fd549f07830e0465&amp;source=embed">View a larger map, or to add yourself or your group to the map.</a> You'll need to sign into your Google account in order to add a new point. Here's a <a href="http://skitch.com/jasonmorrison/bycdy/add-a-point.png-png-image-864x494-pixels-scaled-70">screenshot of how to add a new point on the map</a>. </html>

You may also be interested in other local science groups around the world:

Are there any videos from regional groups?

DIYbio-NYC: Shot glass DNA extraction

<html><div style="clear:both;"></div></html>

DIYbio-SF: Tito's food coloring electrophoresis

<html><div style="clear:both;"></div></html>

DIYbio-boston: diybio visits the fablab

<html><div style="clear:both;"></div></html>

Where can I see an archive of previous DIYbio discussions and questions?

Right over here.

Some of our favorites ("member picks") include discussions on ..


What are some educational resources?

There are many biology and science resources on the net, especially with universities providing "open course ware" for viewing or download. Here are a few university-sponsored educational resources which apply to biohacking.

  • MIT OpenCourseWare (also on iTunes)
  • UC Berkeley educational webcasts: Biology, Chemistry, Chemical Engineering, etc.
  • Many universities are hosting classes (such as Biology) on YouTube

Here are a few industry-sponsored or non-profit-sponsored educational resources which apply to biohacking.


What is synthetic biology and related technology?

Synthetic Biology: A Definition [From Davidson College's Synthetic Biology Seminar in the Fall of 2007]
Synthetic biology refers to the design and construction of novel biological systems. Applying an engineering approach to biology, this emerging field provides an opportunity to: 1) develop new organisms that are capable of performing useful functions and 2) test our understanding how complex biological systems work.
In 1978, the Nobel Prize in Medicine went to Werner Arber, Daniel Nathans, and Hamilton O. Smith for the discovery of restriction enzymes. This discovery marked the beginning of recombinant DNA technology and genetic engineering. Researchers now had the ability to modify the genomes of organisms by cutting and pasting segments of their DNA. For years, genetic engineers have made slight genome modifications in organisms, either by the insertion or deletion of one or two genes, in order to observe phenotypic changes. More recently, as our knowledge of biological systems has grown, the new field of synthetic biology has begun to steal the spotlight. This field builds on the principles of genetic engineering, but attempts to modify genomes on a much larger scale. Instead of inserting or deleting one or two genes, synthetic biologists use recombinant DNA technology and, increasingly, artificial DNA synthesis to introduce whole gene networks into organisms. Because of its complex nature, synthetic biology brings together many different disciplines such as biology, math, engineering and chemistry to try to engineer genomes using preexisting and new biological systems and components. Mathematical modeling enhances the design of synthetic systems before implementation in the wet lab. The possible areas of influence for such biological devices are seemingly infinite, ranging from the production of reusable biofuels to the treatment of some or all cancers. The ultimate goal of synthetic biology is to both build novel (new) biological systems and to create a better understanding of existing ones.
Also see http://syntheticbiology.org/FAQ.html


Drew Endy - Informal - Broad overview

<html><div style="clear:both;"></div></html>

Professor Drew Endy explains that Synthetic Biology techniques are built on top of the foundational technologies of genetic engineering (PCR, oligonucleotides, and DNA sequencing) and are include abstraction, standardization (i.e., biobricks), and automated DNA synthesis. Insulation and Standard Measurement Units (i.e. signal carriers) in biological systems are also significant interests in current synthetic biology research. See also syntheticbiology.org.

What are biobricks?

BioBricks can be described as Lego blocks for building biological systems. However they are in "alpha" state and do not yet work for building arbitrary biological systems. Research needs to be completed and this research will take at least another decade [1st hand quote from personal conversation with BioBricks founders -- jcline]. As of 2009, less than five Biobrick parts have been characterized with reliable and quantifiable behavior.

What is iGEM?

iGEM, the international genetically engineered machine competition, is the premiere undergraduate synthetic biology conference in the world using and developing Biobricks. iGEM teams have been testing and realizing the principles of synthetic biology on a massive scale for the last 5 years, illustrating the viability of garage biotechnology. Student teams are given a kit of biological parts at the beginning of the summer from the Registry of Standard Biological Parts. Working at their own schools over the summer, they use these parts and new parts of their own design to build biological systems and operate them in living cells. Check out igem.org or wikipedia for more info.

See also

Videos

See DIYbio/Videos for a collection of DIYbio, iGEM, and Synthetic Biology videos. For background history on the free software movement, GNU, Richard Stallman, Linus Torvalds, and others, consider watching the freely available video, "Revolution OS" (official site). Wikipedia says: "Directed by J. T. S. Moore, the film features interviews with prominent hackers and entrepreneurs including Richard Stallman, Michael Tiemann, Linus Torvalds, Larry Augustin, Eric S. Raymond, Bruce Perens, Frank Hecker and Brian Behlendorf."

Do you recommend any feeds, blogs, wikis, instructables, .. ?

Safety documentation

This section is for safety documentation from external bodies. DIYbio-related safety information should be found elsewhere.

Legal issues

Are gray. Email safety@diybio.org to get involved in the discussion.

BioBricks (legal stuff)

<html><div style="clear:both;"></div></html>

<html><div style="clear:both;"></div></html>

<html><div style="clear:both;"></div></html>

What's all this about "open", anyway?

This is the desire to continue to apply open source concepts to biology and related fields for great benefits.

"Open" means sharing the biological protocols, the instructions for building the equipment and sources of the materials, the directions for using the equipment, the source code of the software used for the equipment, the raw data from the experiment, the results and any other aspects of the experimental process, in a digital format, on the internet. All of this sharing occurs under typical information technology process (such as on a wiki, or source control, or open database) so that revisions of documents and data can be compared or copied to a new method (called "branching" in software terms). The sharing can be performed under a variety of permissions such as open source licenses which allow others to re-use, modify and distribute their own designs of the technology. Benefits:

  • Re-use and cost. As biology is inherently self-reproducing, it has the ability to make low-cost copies of itself for users. The copies may also allow modification and re-design.


Background and References:

Dramatic recent expansion of intellectual property protection in the field of biotechnology has led to concerns that ongoing innovation will be blocked unless actionis taken to preserve access to and freedom to operate with those tools that are important for further research and development.
A great deal of the innovation we need to see will not come from academia or existing corporations, but from people noodling around in their garages or in start-ups yet to be founded.

-- *jcline@ieee.org 13:40, 23 August 2009 (EDT)

What equipment do I need to perform DIYBio-related projects?

  • Basic biology equipment (see here for PCR equipment, however much of the equipment isn't actually required)
    • or generic tools used in other projects, just use it for biology (see MacGyverisms below)
  • Basic computer equipment
  • Perhaps some open source software development tools

What equipment is in a basic biology lab

.. and how can I make it?

Would you like to contribute to an answer for this question? Run around a lab that you have access to and document all of the equipment that you see, or remember, etc. It's ok if some of the equipment is ridiculous (like 100k+ RPM centrifuges), because we can filter that out later and reduce the lists down to equipment in a basic biology lab.

MacGyverisms

Where can I find auctions for biotech?

How can I make a spectrophotometer?

How can I make an atomic force microscope (AFM)?

How can I make a sterile environment?

Using Ultraviolet (UV) for sterilization

Here is a table of how much UV exposure it takes to kill various organisms and bacteria. Note units are in microwatt-seconds per cm2. Specs for UV lamps usually give emission as microwatts per cm2 measured at a distance of 1 m from the lamp.

Do not leave UV lamps on for long periods of time because the bulbs "wear out". Specifically, the amount of UV produced will decrease over time (see manufacturer spec sheets). With extended use, it may seem that the bulb is creating a sterile environment when actually it is not producing enough UV.

Warning: UV spectrum of sterilization bulbs are bad for you. Do not expose yourself to the UV. If you build a UV "hood", add a switch which always turns the light off when the door is opened.


Chemicals and Reagents are expensive. How can I make my own? What can I substitute?

Substitutes for Expensive Agarose

Using Agar instead of Agarose

"We have recently attempted to find an inexpensive alternative to agarose for analytical purposes. We observed that agar is an adequate support medium for gel electrophoresis (Fig 1). [...] These included Difco Bacto-Agar (Detroit, U.S.A.), Merck Agar-Agar (Darmstadt, Germany), Oxoid agar (London, UK.), Biolab Agar (Halfway House, R.S.A.), Bitek Agar (Detroit, U.S.A.) and bulk agar obtained from New Zealand. All these agar formulations gave good separation of our DNA ... Conclusion: ... agar can be used as a gel matrix in place of agarose in many instances. We do not recommend using agar if the DNA is to be purified from a gel. We have attempted experiments involving the southern blotting technique using agar as our gel matrix. Our results were, however, unsatisfactory. We therefore recommend that agar gels can be used as a cheap altelnative to agarose to check the purity, size and amount of DNA in a sample."
From: AGAR, AN ALTERNATIVE TO AGAROSE IN ANALYTICAL GEL ELECTROPHORESIS, BIOTECHNOLOGY TECH, CD. Viljoen, B.D. Wingfield* and M.J. Wingfield Volume 7 No.10 (October 1993) pp723-726. DOI:10.1007/BF00152620
"The other option is to wash with two changes of EDTA (think it was 25mM) to remove divalent metals and sulfonated (non-gelling) agar. There is also a process based on alcohol washes - but can't find my reference to it." -- Abizar on DIYBio google group

Using Other Starches to Substitute for Agarose

Table lists starches & flours:

How do you purify agar?

"here is a good washed agar protocol, cleans up contaminants. It involves acetone, easy to find at home depot, but dont be smoking. Also the washed agar will gel at a lower concentration, 1% instead of 1.5% or 2%. As store bought stuff is less pure than Difco, it would certainly benefit more from cleaning. I have only done the second protocol." http://www.fgsc.net/neurosporaprotocols/How%20to%20wash%20agar.pdf -- Tom on the diybio google group

How to Make Taq

Taq is super easy to purify, you don't need a column. If you want Taq to use in PCR, you can just grow the plasmid with the DeltaTaq insert (available from ATCC), and heat the crude lysate. If you want to clean it up a bit more, for example for an enzymatic study, try this protocol: Rapid purification of high-activity Taq DNA polymerase Pluthero Nucl. Acids Res..1993; 21: 4850-4851 -Stacy

Are there any plans for a DIYbio-friendly file format for protocols, instructions and hardware?

Yes, absolutely. You should consider contacting Bryan Bishop about this. There is also a lot of reading material distributed throughout the web on this topic.

What is open source hardware?

http://p2pfoundation.net/Open_source_hardware

"Open Source Hardware is hardware that keeps its designs available in a way similar to the open source in software." There is no defacto license for open source hardware yet. Some websites (like ponoko, thingiverse, unptnt) put hardware CAD files under a "Creative Commons" license. However, it's still unknown how this is likely to interface with the legal systems around the world (i.e., patents). And it's not necessarily true that putting something directly into the public domain is the best way to go either. So, the future is presently unclear- in terms of legal issues.

DIYbio has many big supporters of standardized packaging formats (like .tar.gz, .deb, .tar, .rpm, etc.) for automatic downloading of hardware components and instructions on how to build the components. There are some sites that almost implement this (but not quite) such as instructables, ponoko, thingiverse, odesigns, unptnt, etc.

'Slashdot discussions

Has DIYbio been in the news?

Yes.


Keiki gels (gels-in-a-straw) MiniFAQ

Do all of the straws run at the same rate?

"I think the key there will be making sure that all the straws are exactly the same length -- each straw behaves like a resistor, so just like any other resistive material, a greater amount of material will mean a higher resistance (and thus lower current at constant voltage)." -- Meredith

How do you strain for DNA in a straw?

"Easiest way to do that would be to use a stain that you add to the warm agarose before pouring, such as SYBR Safe or GR Safe (or ethidium bromide, but the cool kids don't use that anymore). I suppose you could slit the straw open with a razor blade if you wanted to use methylene blue, but that sounds like a huge pain in the ass." -- Meredith

What equipment do I need to perform experiment XYZ?

Just run it through the handy "checktools" program. ((Note: the idea here is that once the pcr.xml file makes a few friends with other protocols, software can then be written to extract a list of tools from the standardized protocol format. But this doesn't exist yet, since we only have "pcr.xml".))

DIY Genetic engineering

Discussion of Organisms for DIY Genetic Engineering

See the group discussions and the diybio model organisms list.

Candidates are:

  • Psychomitrella patens (a moss that is naturally competent)
  • Halobacterium NRC1 (grows in very salty media)
  • Acinetobacter baylyi ADP1


ADP1

ADP1 has been considered a good candidate for DIY Genetic Engineering because it is naturally competent.

From the list:

I developed ADP1 as a model organism for simple genetic engineering

while at Scripps. The paper appears under my name in Nucleic Acids Research (5780–5790 Nucleic Acids Research, 2004, Vol. 32, No. 19 doi:10.1093/nar/gkh881). When I did the work, ADP1 was considered A. calcoaceticus, and was given a clean bill of health (biosafetly level 1). Later, to my dismay, it was collapsed into A. baylyi, grouping it with nasty pathogens and making it thereby less accessible. My interpretation: they probably are all the same species, technically, but Acinetobacter's predisposition for collecting genes from outside sources (which is exactly what makes it so useful - read the paper), led some strains to collect a bunch of virulence factors and become superbugs, like the ones that plague hospitals. If you can get some ADP1, I would consider it as safe as Ec K-12, but be very careful with less well-characterized strains of this species, because it can and will pick up genes that offer an adaptive advantage in it's environment, so you never know what a wild-type Acinetobacter might be capable of. - dmetzgar


DNA synthesis MiniFAQ

Can I order DNA over the internet?

mrgene, e-oligos, geneoracle, etc.

What are oligonucleotides?

Wikipedia sez: "An oligonucleotide is a short nucleic acid polymer, typically with twenty or fewer bases. Although they can be formed by bond cleavage of longer segments, they are now more commonly synthesized by polymerizing individual nucleotide precursors. Automated synthesizers allow the synthesis of oligonucleotides up to 160 to 200 bases. The length of the oligonucleotide is usually denoted by "mer" (from Greek meros, "part"). For example, a fragment of 25 bases would be called a 25-mer. Because oligonucleotides readily bind to their respective complementary nucleotide, they are often used as probes for detecting DNA or RNA. Examples of procedures that use oligonucleotides include DNA microarrays, Southern blots, ASO analysis, fluorescent in situ hybridization (FISH), and the synthesis of artificial genes. Oligonucleotides composed of DNA (deoxyoligonucleotides) are often used in the polymerase chain reaction, a procedure that can greatly amplify almost any small piece of DNA. There, the oligonucleotide is referred to as a primer, allowing DNA polymerase to extend the oligonucleotide and replicate the complementary strand."

How are oligonucleotides synthesized?

Oligonucleotide synthesis is done via a cycle of four chemical reactions that are repeated until all desired bases have been added:

  • Step 1 - De-blocking (detritylation): The DMT is removed with an acid, such as TCA (get it at Sigma-Aldrich), and washed out, resulting in a free 5' hydroxyl group on the first base.
  • Step 2 - Base condensation (coupling): A phosphoramidite nucleotide (or a mix) (struct, synthesis of phosphoramidite building blocks [pdf]) is activated by tetrazole (get) which removes the iPr2N group on the phosphate group. After addition, the deprotected 5' OH of the first base and the phosphate of the second base react to join the two bases together in a phosphite linkage. These reactions are not done in water but in tetrahydrofuran (get) or in DMSO (get). Unbound base and by-products are washed out.
  • Step 3 - Capping: About 1% of the 5' OH groups do not react with the new base and need to be blocked from further reaction to prevent the synthesis of oligonucleotides with an internal base deletion. This is done by adding a protective group in the form of acetic anhydride (get) and 1-methylimidazole (get)which react with the free 5' OH groups via acetylation. Excess reagents are washed out.
  • Step 4 - Oxidation: The phosphite linkage between the first and second base needs to be stabilized by making the phosphate group pentavalent. This is achieved by adding iodine (go to local store) and water which leads to the oxidation of the phosphite into phosphate. This step can be substituted with a sulphorylation step for thiophosphate nucleotides.


(Note: this might be a good document to see how phosphoramidites can be ordered from suppliers.) Here are some oligo synth protocols in molecbio. Quantifying oligos from phosphoramadite synth. Note that you may not have to actually purchase phosphoramadites to start off with, but instead begin with a purified solution of nucleic acid??

What are the origins of oligonucleotide impurities and errors?

See here.

Microfluidics MiniFAQ

What are microfluidics?

Wikipedia sez: Microfluidics deals with the behavior, precise control and manipulation of fluids that are geometrically constrained to a small, typically sub-millimeter, scale. Typically, micro means one of the following features: small volumes(nl, pl, fl); small size; low energy consumption; effects of the micro domain (i.e., laminar flows, surface tension, diffusion, Marangoli forces, capillary forces, ...).

Even more on 'what are microfluidics'

See also:

An example of microfluidics

The following is a run of the example microfluidics T-junction simulation in elmer, an open source CFD/FEM/FEA package. What you see here is the progression of an analyte due to electro-osmotic flow. There are two electric fields, three boundary conditions and a lot of wasted hours playing around with ElmerGUI and ElmerFront.

<html><div style="clear:both;"></div></html>


What is a lab on a chip (LOC)?

A lab-on-a-chip (LOC) is a device that integrates one or several laboratory functions on a single chip of only millimeters to a few square centimeters in size. LOCs deal with the handling of extremely small fluid volumes down to less than pico liters. Lab-on-a-chip devices are a subset of MEMS devices and often indicated by "Micro Total Analysis Systems" (µTAS) as well. Microfluidics is a broader term that describes also mechanical flow control devices like pumps and valves or sensors like flowmeters and viscometers. However, strictly regarded "Lab-on-a-Chip" indicates generally the scaling of single or multiple lab processes down to chip-format, whereas "µTAS" is dedicated to the integration of the total sequence of lab processes to perform chemical analysis. The term "Lab-on-a-Chip" was introduced later on when it turned out that µTAS technologies were more widely applicable than only for analysis purposes.

Ultimately the idea is to have all of the typical components, procedures and processes of a laboratory available on a "chip", on a single perhaps disposable device, rather than having to build or purchase bulky equipment that sometimes tends to be hard to acquire or learn about.

Appendix 1 - list of Synthetic Biology Companies