Biomod/2014/Sendai/Simulation: Difference between revisions

From OpenWetWare
Jump to navigationJump to search
No edit summary
(Removing all content from page)
 
(38 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{Biomod/2014/Sendai/temp/0821/Styles}}
<html>
<head>
<title></title>
</head>


<body>
<div id="header">
<div id="homebutton">
<li id="stamp"><a href="http://openwetware.org/wiki/Biomod/2014/Sendai">Home</a></li>
</div>
<div id="globalnav" class="simu">
<ul>
<li  id="gn-home"><a href="/wiki/Biomod/2014/Sendai">Home</a></li>
<li  id="gn-intro"><a href="/wiki/Biomod/2014/Sendai/Introduction">Introduction</a></li>
<li  id="gn-design"><a href="/wiki/Biomod/2014/Sendai/Design">Design</a></li>
<li  id="gn-simu"><a href="/wiki/Biomod/2014/Sendai/Simulation">Simulation</a></li>
<li  id="gn-xp"><a href="/wiki/Biomod/2014/Sendai/Experiment">Experiment</a></li>
<!--<li  id="gn-protocol"><a href="/wiki/Biomod/2014/Sendai/Protocol">Protocol</a></li>-->
<li  id="gn-dis"><a href="/wiki/Biomod/2014/Sendai/Discussion">Discussion</a></li>
<li  id="gn-team"><a href="/wiki/Biomod/2014/Sendai/Team">Team</a></li>
<li id="gn-end"><a href="#"></a></li>
</ul>
</div>
</div>
<div id="main">
<h1>Simulation</h1>
<a href="#approach1">1st Approach: Enzyme system</a><br>
<a href="#approach2">2nd Approach; Enzyme-free System</a>
<h2>1st Approach: Enzyme system</h2>
<h3>Results</h3>
<p>
In our system, as the number of combinations among DNAs is so large, there are a lot of intermediates that are not the major product. We have to confirm that the effects of the products are negligible in our system. Searching for an optimum condition to realize the system is not a simple task because the combination of intermediates and reactions among them is too large to take into considerations. To solve these problems, we check the behaviors by simulation. The optimum condition can be applied to experimental conditions.
We wrote out all the reaction formulas in the system, and then made ordinary differential equations. Simulations were implemented by solving the equations by numerical computation software. Details are shown in a <a href="#method">Method section</a>
</p>
<br>
<div class="block">
<div class="blockleft">
<figure>
<img src="http://openwetware.org/images/4/44/0823tetsuya-01.png">
<figcaption>Fig.1 Result of simulation when the system accepted A-B input.</figcaption>
</figure>
</div>
<div class="blockright">
<span>First, we give an A-B input to the system. Here A-B means the input has commands that give A-output and then B-output.
</span>
</div>
</div>
<br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br>
<p>The result of simulation is shown in Fig.1. The horizontal axis is time [sec], and the vertical axis is concentration [nM].In Fig.1, the input is mixed at 0[sec]. As a result, the concentration of output-A increases until about 20[sec]. After that, the output-B is released until about 50[sec].</p>
<p>These results above show that the system works properly in the mathematical model. We further check the programmability of our system. The programmability is whether the system works accurately, whatever information is coded in the input DNA. We simulate how the system works when it accepts B-A input. If our design is appropriate, the system will give B-output then A-output.</p>
<br>
<div class="block">
<div class="blockleft">
<figure>
<img src="http://openwetware.org/images/c/c3/0823tetsuya_gyaku-01.png">
<figcaption>Fig.2 Result of simulation when the system accepted B-A input.</figcaption>
</figure>
</div>
<div class="blockright">
<span>In the simulation, we get the result as we expected (Fig.2).
This proves our system can recognize the input DNA and change its outputs as we designed. In other words, it shows that our system is programmable.
<br><br>
</span>
</div>
</div>
<div class="block">
<div class="blockleft">
<figure>
<img src="http://openwetware.org/images/3/3e/Ab%28インプットなし%29-01.png">
<figcaption>Fig.3 Result of simulation when the system accepted no input.</figcaption>
</figure>
</div>
<div class="blockright">
<span>
As a control experiment, we simulate the system without input, which gives no outputs (Fig.3).
<span>
</div>
</div>
<br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br>
<p class="textbox">
In terms of giving outputs in order, time intervals are the important elements.
To control our system more precisely, we investigated the relations between time intervals and the concentration of input, templates, and gates.
As each concentration affects the system, we check the time intervals when the concentration of component is changed.
When concentration of input, templates, gates are changed (Fig.4,5,6,7,8), the results come out as follows.
Each result shows that time interval can be adjusted by changing the concentration of components.
Decrease in the concentration of inputs or templates delays the releasing time of outputs, because the reactions of input and templates produce Key DNA, which produces outputs (Fig.4,5,6).
Decrease in the concentration of GateA delays the releasing time of B-output, because GateA and Key DNA-A start “renewing process”(Fig.7,8).
</p>
<div class="block">
<figure>
<img src="http://openwetware.org/images/5/59/0824simulation04-01.png"  width="480px" height="362px">
<figcaption>Fig.4 Result of simulation when concentration of template-A is changed.</figcaption>
</figure>
<figure>
<img src="http://openwetware.org/images/e/e7/0824simulation03-01.png" width="480px" height="362px">
<figcaption>Fig.5 Result of simulation when concentration of template-B is changed.</figcaption>
</figure>
</div>
<div class="block">
<figure>
<img src="http://openwetware.org/images/9/91/0827simulation08-01.png" width="480px" height="362px">
<figcaption>Fig.6 Result of simulation when concentration of gate-A is changed.</figcaption>
</figure>
</div>
</div>
<div class="block">
<div class="blockleft">
<figure>
<img src="http://openwetware.org/images/c/cf/0827simulation09-01.png" width="480px" height="362px">
<figcaption>Fig.7 Result of simulation when concentration of gate-B is changed.</figcaption>
</figure>
</div>
</div>
<div class="block">
<div class="blockleft">
<figure>
<img src="http://openwetware.org/images/6/6e/0824simulation05-01.png" width="480px" height="362px">
<figcaption>Fig.8 Result of simulation when concentration of input is changed.</figcaption>
</figure>
</div>
</div>
<p class="textbox">
The result of simulation shows that our system can be controlled in terms of order and time intervals. We conclude that<br>
・Our system gives outputs in order that is coded in the input DNA.<br>
・Our system gives outputs with time intervals and the interval can be arranged by changing the concentrations of the components.<br>
</p>
<h3 id="method">Method</h3>
<p>
Our system is described by differential equations obtained from chemical reaction formulas.
</p>
<img src="http://openwetware.org/images/b/b8/Dx-01.png">
<p>
<p>We solved them by using numerical software (Scilab).</p>
<p>All reactions in our system are shown in <a href="http://openwetware.org/images/c/cc/Scan1.jpg">Fig. 9.1</a>,<a href="http://openwetware.org/images/b/bc/Scan2.jpg">Fig. 9.2</a><br>
Source file used in calculations is as follows.<a href="http://openwetware.org/images/9/98/Source.txt">(Source File)</a><br>
</p>
<h3>Condition</h3>
Condition of simulating is as follows.<br><br>
<table class="table">
<tr><td>Input DNA concentration:</td><td>10nM</td></tr>
<tr><td>Template1 concentration:</td><td>10nM</td></tr>
<tr><td>Template2 concentration:</td><td>10nM</td></tr>
<tr><td>Liposome1 concentration:</td><td>10nM</td></tr>
<tr><td>Liposome2 concentration:</td><td>10nM</td></tr>
<tr><td>Gate1 concentration:</td><td>10nM</td></tr>
<tr><td>Gate2 concentration:</td><td>10nM</td></tr>
<tr><td>Simulation time:</td><td>100[sec]</td></tr>
</table>
</p>
<p>
Values of chemical parameters are as follows.<br><br>
<table class="table">
<tr><td>Hybridization:</td><td>kh=5.0*10^6</td></tr>
<tr><td>Denaturation:</td><td>kd=1.0*10^3</td></tr>
<tr><td>Branch migration:</td><td>kb=1.0*10^-1</td></tr>
<tr><td>Polymerase:kp:</td><td>=17</td></tr>
<tr><td>Nickase:</td><td>kn=3.0</td></tr>
<tr><td>Restriction enzyme:</td><td>kr=3.0</td></tr>
</table>
</p>
[1] David Yu Zhang et al. 2009<br>
[2] Kelvin Montagne et al. 2010
<h2>2nd Approach; Enzyme-free System</h2>
</div>
<div id="footer1">
<div class="lefttext">
(C)Copyright Biomod 2014 Team Sendai<br />
E-MAIL:
<a href="mailto:teamsendai2014@gmail.com"><span style="color:white">teamsendai2014@gmail.com</span></a>
</div>
<div class="rightimg">
<a href="http://www.molbot.mech.tohoku.ac.jp/index.html">
<img src="http://openwetware.org/images/f/f3/Muratalab-icon2_dark-01.png"
width="200" alt="Molcular Robotics Lab"></a>
</div>
</div>
</body>
</html>

Latest revision as of 17:48, 8 September 2014