Biomod/2014/Hokudai/DESIGN

From OpenWetWare
Revision as of 03:58, 29 August 2014 by Ryo Shirakawa (talk | contribs)
Jump to navigationJump to search

<html lang="ja">

<head>

<meta charset="UTF-8">
<title>team hokudai</title>

<style type="text/css">

body { background-color: #000000; color: #a9a9a9; background-image: url(Team Hokudai.jpg); }

p.example1 { font: 200% Times New Roman; } p.example2 { text-align: center; } p.example3 { word-spacing: 1em; } p.example4 { line-height: 6em; } p.example5 { text-decoration: underline overline; } p.example6 { font: 130% Times New Roman; } p.example7 { font: 150% Times New Roman; } p.example11 { font: 160% Times New Roman; } p.example12 { text-align: left;} p.example111 { font: 180% Times New Roman; }

div.example1 { width: 1200px; height: 500px; background-color: #ffffff; float: left; }

.clearLeft { clear: left; }

</style>

</head>

<body> <p class="example7"> Control of the contraction direction with well-oriented microtubules</p> <p class="example6">Microtubule will be polymerized from tubulin monomer using IR light irradiation in a confined cell with a temperature gradient. Under this temperature gradient, the nucleus is formed at the warm end, and the growth process progresses toward the cold end. When the density or length of the filaments exceeds a critical value, well-oriented microtubules with preferential polarity will be obtained (Figure1).</p>

<div class="example1">

<p><a class="image" title="team hokudai"><img alt="team hokudai" src="https://upload.wikimedia.org/wikipedia/commons/4/48/%E5%BE%AE%E5%B0%8F%E7%AE%A1%E3%81%AE%E9%85%8D%E5%90%91%28%E8%8B%B1%E8%AA%9E%29.png" vspace="10" hspace="10" width="500" height="400" border="0" /></a> <a class="image" title="team hokudai"><img alt="team hokudai" src="https://upload.wikimedia.org/wikipedia/commons/f/f2/DESIGN%28Figure3%29.JPG" vspace="10" hspace="10" width="500" height="400" border="0" /></a> </p> </div>


<p class="clearLeft example6">(Figure1: Formation of well-oriented microtubules with preferential polarity polymerized under temperature gradient.)

The well-oriented microtubules will start to move after adding multimeric kinesin * and ATP(Figure2). </p>

<div class="example1">

<p><a class="image" title="team hokudai"><img alt="team hokudai" src="https://upload.wikimedia.org/wikipedia/commons/d/dc/DESIGN02%28last%29.JPG" vspace="10" hspace="10" width="500" height="400" border="0" /></a> <a class="image" title="team hokudai"><img alt="team hokudai" src="https://upload.wikimedia.org/wikipedia/commons/7/70/%E5%8F%8E%E7%B8%AE.gif" vspace="10" hspace="10" width="500" height="400" border="0" /></a> </p> </div>


<p class="clearLeft example6">(Figure2: Uniaxial contraction of well-oriented microtubules by adding multimeric kinesin at the nucleation site of microtubules.)</p> <p class="example6"><br>*Kinesins were assembled into multi-motor clusters by crosslinking of non-motor domain of kinesin. This mimics the functions of myosin filaments of the muscle.</br></p>

<p class="example7 clearLeft"> 2) Formation of the artificial sarcomere of muscle by photo irradiation</p> <p class="example6">We can form multiple microtubule nucleation sites with temperature gradient created by photo irradiation. After adding kinesin and ATP, it will work as artificial sarcomere(Figure3). (Figure 3: Schematic diagram of the microtubule nucleation site by light irradiation and an artificial muscle having sarcomere.)</p>

<div class="example1">

<p><a class="image" title="team hokudai"><img alt="team hokudai" src="https://upload.wikimedia.org/wikipedia/commons/6/6f/DESIGN%28Figure4%29.jpg" vspace="10" hspace="10" width="500" height="400" border="0" /></a> <a class="image" title="team hokudai"><img alt="team hokudai" src="https://upload.wikimedia.org/wikipedia/commons/d/d5/DESIGN%28Figure4%29last.JPG" vspace="10" hspace="10" width="500" height="400" border="0" /></a> </p> </div>


</body>

</html>