Biomod/2014/Hokudai: Difference between revisions

From OpenWetWare
Jump to navigationJump to search
No edit summary
No edit summary
(13 intermediate revisions by 3 users not shown)
Line 6: Line 6:


<style type="text/css">
<style type="text/css">
<!--
BODY  {
  scrollbar-base-color:      #B7C4E0;
  scrollbar-face-color:      #1987E5;
  scrollbar-arrow-color:      #1987E5;
  scrollbar-track-color:      #000000;
  scrollbar-3dlight-color:    #342659;
  scrollbar-highlight-color:  #BCC8DB;
  scrollbar-shadow-color:    #1F1E47;
  scrollbar-darkshadow-color: #000000; }
-->


body {
body {
Line 13: Line 26:
}
}


p.example1 { font: 200% Times New Roman; }
p.example1 { font: 230% Times New Roman; }
p.example2 { text-align: center; }
p.example2 { text-align: center; }
p.example3 { word-spacing: 1em; }
p.example3 { word-spacing: 1em; }
p.example4 { line-height: 6em; }
p.example4 { line-height: 6em; }
p.example5 { text-decoration: underline overline; }
p.example5 { text-decoration: underline overline; }
 
p.example6 { font: 130% Times New Roman; }
p.example7 { font: 150% Times New Roman; }
p.example11 { font: 160% Times New Roman; }
p.example11 { font: 160% Times New Roman; }
p.example12 { text-align: left;}  
p.example12 { text-align: left;}  
 
p.example111 { font: 180% Times New Roman; }
 


div.example1 {
div.example1 {
width: 255px;
width: 800px;
height: 130px;
height: 350px;
background-color: #ffffff;
background-color: #ffffff;
float: left;
float: left;
Line 46: Line 59:
<div class="example1">
<div class="example1">


<p><center><a  class="image" title="team hokudai"><img alt="team hokudai" src="https://upload.wikimedia.org/wikipedia/commons/thumb/0/02/Team_Hokudai%EF%BC%92.jpg/1200px-Team_Hokudai%EF%BC%92.jpg"  width="180" height="100" border="0" /></a></p></center>
 
<p><center><a  class="image" title="team hokudai"><img alt="team hokudai" src="https://upload.wikimedia.org/wikipedia/commons/c/c0/Title%EF%BC%88%E4%BB%AE%EF%BC%89.png"  width="600" height="320" border="0" /></a></center></p>
</div>
</div>


 
<nobr>
<p class="example1 example2 example3 example4 example5">  <a href="Hokudai/PROJECT">PROJECT</a>  <a href="Hokudai/DESIGN">DESIGN</a> <a href="Hokudai/MATERIAL&METHOD">MATERIAL&METHOD</a> <a href="Hokudai/RESULTS">RESULTS</a> <a href="Hokudai/FUTURE">FUTURE</a> <a href="Hokudai/TEAM">TEAM</a> <a href="Hokudai/SPONSORS">SPONSORS</a> </p>
<p class="example111 example2 example3 example4 example5">  <a href="Hokudai/PROJECT">PROJECT</a>  <a href="Hokudai/DESIGN">DESIGN</a> <a href="Hokudai/EXPERIMENTS&RESULTS">EXPERIMENTS&RESULTS</a> <a href="Hokudai/TEAM">TEAM</a> <a href="Hokudai/SPONSORS">SPONSORS</a>  
</nobr>
</p>




<p class="clearLeft example1 example2 ">Abstract
<p class="clearLeft example1 example2 ">Abstract
<br><p class="example11 example2 example12 "> Biomolecular motor systems are smallest natural machine that convert chemical energy of ATP into mechanical work. Aim of this project is to establish a method to control arbitrarily the spatial arrangement of the biomolecular motors. Based on this method, we create a power system capable of amplification of speed and control of the direction of movement.  
<br><p class="example11 example2 example12 "> The aim of this project is to establish a method to control the spatial arrangement and polarity of biomolecular motors which is smallest power unit of biological system. Biomolecular motors are organized into various structures which play important roles in a number of biological processes under regulation of space arrangement in vivo. As the ultimate form of assembly of biomoelcular mortors, skeletal muscle has highly organized structure composed of sarcomeres, smallest contractile units of muscles, which are oriented structure of biomolecular motor actin-myosin complex. This high organized structure generates dynamic and rapid contraction of the muscle. Recently a number of techniques to produce various assembllies of biomolecular motors have been developed. However it is still challenging to reconstruct the muscle from biomolecular motors due to difficulty in space arrangement and control of polarity of biomolecular motors. Here we try to control the space arrangement and polarity of biomolecular motors under local temperature gradient using photo irradiation. This project will foster application of biomolecular motors for bio soft actuators.</Div>
We use a dissipative structure induced by the temperature gradient as a way to control the spatial arrangement of biomolecular motors. By creating a local temperature gradients by light irradiation, We can control arbitrarily pattern of dissipative structure with uniform polarity. We make the system express the movement (contraction such as muscle, for example) by introducing the ATP, which is the energy source. It is controlled by using the intermolecular interactions of DNA transfer of power generated by biomolecular motors. It is expected to contribute to the creation of soft actuators designed freely in the future.</Div>
</p>
</p>



Revision as of 07:17, 29 August 2014

<html lang="ja">

<head>

<meta charset="UTF-8">
<title>team hokudai</title>

<style type="text/css">

<!-- BODY {

 scrollbar-base-color:       #B7C4E0;
 scrollbar-face-color:       #1987E5; 
 scrollbar-arrow-color:      #1987E5;
 scrollbar-track-color:      #000000;
 scrollbar-3dlight-color:    #342659;
 scrollbar-highlight-color:  #BCC8DB;
 scrollbar-shadow-color:     #1F1E47;
 scrollbar-darkshadow-color: #000000; } 

-->


body { background-color: #000000; color: #a9a9a9; background-image: url(Team Hokudai.jpg); }

p.example1 { font: 230% Times New Roman; } p.example2 { text-align: center; } p.example3 { word-spacing: 1em; } p.example4 { line-height: 6em; } p.example5 { text-decoration: underline overline; } p.example6 { font: 130% Times New Roman; } p.example7 { font: 150% Times New Roman; } p.example11 { font: 160% Times New Roman; } p.example12 { text-align: left;} p.example111 { font: 180% Times New Roman; }

div.example1 { width: 800px; height: 350px; background-color: #ffffff; float: left; }

.clearLeft { clear: left; }

</style>

</head>

<body>



<div class="example1">


<p><center><a class="image" title="team hokudai"><img alt="team hokudai" src="https://upload.wikimedia.org/wikipedia/commons/c/c0/Title%EF%BC%88%E4%BB%AE%EF%BC%89.png" width="600" height="320" border="0" /></a></center></p> </div>

<nobr> <p class="example111 example2 example3 example4 example5"> <a href="Hokudai/PROJECT">PROJECT</a> <a href="Hokudai/DESIGN">DESIGN</a> <a href="Hokudai/EXPERIMENTS&RESULTS">EXPERIMENTS&RESULTS</a> <a href="Hokudai/TEAM">TEAM</a> <a href="Hokudai/SPONSORS">SPONSORS</a> </nobr> </p>


<p class="clearLeft example1 example2 ">Abstract <br><p class="example11 example2 example12 "> The aim of this project is to establish a method to control the spatial arrangement and polarity of biomolecular motors which is smallest power unit of biological system. Biomolecular motors are organized into various structures which play important roles in a number of biological processes under regulation of space arrangement in vivo. As the ultimate form of assembly of biomoelcular mortors, skeletal muscle has highly organized structure composed of sarcomeres, smallest contractile units of muscles, which are oriented structure of biomolecular motor actin-myosin complex. This high organized structure generates dynamic and rapid contraction of the muscle. Recently a number of techniques to produce various assembllies of biomolecular motors have been developed. However it is still challenging to reconstruct the muscle from biomolecular motors due to difficulty in space arrangement and control of polarity of biomolecular motors. Here we try to control the space arrangement and polarity of biomolecular motors under local temperature gradient using photo irradiation. This project will foster application of biomolecular motors for bio soft actuators.</Div> </p>


</div>





</body>

</html>