Biomod/2013/NanoUANL/References

From OpenWetWare
Revision as of 19:51, 26 October 2013 by Ruben Garcia Puente (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search

<html> <head> <title>HTML Generator Sample Page</title> </head> <body>

<p> <strong>Referencias</strong></p>

<p> Reactions in containers</p> <p style="margin-left:36.0pt;"> 1.&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Prahasun, D. 2007. Development of Icosahedral Virus Particles as Multivalent Display Scaffolds for &nbsp;Metal Complexes. Scripps Research Institute. La Jolia, California.</p> <p style="margin-left:36.0pt;"> 2.&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Roco, M. C. 2003. Nanotechnology: convergence with modern biology and medicine. Curr Opin Biotechnol, 14(3):337-46</p> <p style="margin-left:36.0pt;"> 3.&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Chiu, D. T., Wilson, C. F., Karlsson, A., Danielsson, A., Lundgvist, A., Stomberg, A., Rytts&eacute;n, F., Davidson, M., Nordholm. S., Orwar, O. and &nbsp;Zare, R. N., 1999. Manipulating the Biochemical Nanoenvironment Around Single. Chem. Phys., 247:133-39</p> <p style="margin-left:36.0pt;"> 4.&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Ho., R. J. Y., Rouse, B. T., Huang, L., Interactions of&nbsp; target-sensitive immunoliposomes with herpes simplex virus: the foundation of a sensitive immunoliposome assay for the virus. 1987 J. Biol. Chem. 262:13979-84</p> <p style="margin-left:36.0pt;"> 5.&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Discher, D. E., and Eisenberg, A. 2002. Science, 297:967-73.</p> <p style="margin-left:36.0pt;"> 6.&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Kramer, R. M., Li, C., Carter, D. C., Stone M. O., and Naik R. R. 2004. Engineered Protein Cages for Nanomaterial Synthesis. J. Am. Chem. Soc.126 (41):13282-86</p> <p style="margin-left:36.0pt;"> 7.&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Douglas, T., Dickson, D. P. E., Betterdige, S., Charnock, J., Garner, C. D. and Mann, S. 1995. Synthesis and Structure of an Iron (III) Sulfide-Ferritin Bioinorganic Nanocomposite. Science. 269:54-57</p> <p style="margin-left:36.0pt;"> 8.&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Broz, P., Driamov, S., Ziegler, J., Ben-Haim, N., Marsch, S., Meier, W., Hunziker, P. 2006. Toward Intelligent Nanosize Bioreactors: A pH-Switchable, Channel-Equipped, Functional Polymer Nanocontainer. Nano Lett., 6(10):2349&ndash;2353</p> <p style="margin-left:36.0pt;"> 9.&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Escosura, A., Nolte, R. J., and Cornelissen, J. L. M. 2009. Viruses and protein cages as nanocontainers and nanoreactors. &nbsp;J. Mater. Chem. 19:2274&ndash;2278</p> <p style="margin-left:36.0pt;"> 10.&nbsp;&nbsp;&nbsp; Verduin, B. J. M. 1974. The preparation of CCMV-protein in connection with its association into a spherical particle. FEBS Lett. 45:50&ndash;54</p> <p style="margin-left:36.0pt;"> 11.&nbsp;&nbsp;&nbsp; Aragones, M. C., Engelkamp, H., Claessen, V. I., Sommerdijk, N. A. J. M., Rowan, A. E., Christianen, P. C. M, Maan, J. C., Verduin, B. J. M., Cornelissen, J J. L. M., and Nolte. R. J. M. 2007. A virus-based single-enzyme nanoreactor. Nature Nanotechnology, 2:635-39</p> <p style="margin-left:36.0pt;"> 12.&nbsp;&nbsp;&nbsp; Brumfield, S., Willits, D., Tang, L., Johnson, J., Douglas, T. and Young, M. 2004. Heterologous expression of the modified coat protein&nbsp;of Cowpea chlorotic mottle bromovirus results in the assembly of protein cages with altered architectures and functions. Journal of General Virology, 85:1049&ndash;53</p> <p style="margin-left:36.0pt;"> &nbsp;</p>

<p> Capsid-assisted synthesis</p> <p style="margin-left:36.0pt;"> 1.&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Carotenuto, G., Polumba, M.. Nicola, S. 2013. A new highly soluble precursor for in situ silver nanoparticle generation. in polymers. e-Polymers. 12(1) 984-989.</p> <p style="margin-left:36.0pt;"> 2.&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Rebek, J. 2009. Molecular Behavior in Small Spaces. Accounts of Chemical Research. 42(10) 1660-1668.</p> <p style="margin-left:36.0pt;"> 3.&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Seshadri, S., Prakash, A., Kowshik, M. 2012. Biosynthesis of silver nanoparticles by marine bacterium Idiomarina sp. PR58-8. Bulletin for Material Science. 35(7) 1201-1205</p> <p style="margin-left:36.0pt;"> 4.&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Rodriguez, A. G., Ping, L. Y., Marcato, P. D., Alves, O. L., Silva, M. C., Ruiz, R. C., Melo, I. S., Tasic, L., DeSouza, A. O., 2013. Biogenic antimicrobial silver nanoparticles produced by fungi. Applied Microbiology and Biotechnology. 97(2) 775-82.</p> <p style="margin-left:36.0pt;"> 5.&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Kumar V., S. Yadav K. Plant-mediated synthesis of silver and gold nanoparticles and their applications. Journal of Chemical Technology and Biotechnology. 2009. 84(2) 151-57.</p> <p style="margin-left:36.0pt;"> 6.&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Destito, G., Schneemann, A., Manchester, M. 2009. Biomedical nanotechnology using virus-based nanoparticles. Microbiology and Immunity. 327, 95-122</p> <p style="margin-left:36.0pt;"> 7.&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Klem, M. T., Young, M., Douglas, T. 2008. Biomimetic synthesis of B-Ti02 inside a viral capsid. Journal of Materials Chemistry. 18, 3821-23</p> <p style="margin-left:36.0pt;"> 8.&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; M. Allen, D. Willits, J. Molsof, M. Young, T. Douglas. 2002. Protein cage constrained synthesis of ferromagnetic iron oxide nanoparticles. Advanced Materials 14(21) 1562-65</p> <p style="margin-left:36.0pt;"> 9.&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Shenton W., Douglas, T., Young, M., Stubbs, G. and Mann, S., 1999. Adv. Mater. 11, 253.</p> <p style="margin-left:36.0pt;"> 10.&nbsp; &nbsp;&nbsp;Mao, C. Solis, D. J, Reiss, B. D., Kottmann, S. T., Sweeeney, R. Y., Hayhurst, A., Georglou, G., Iverson, B. and Belcher, A. M.. 2004. Virus based toolkit for the directed synthesis of magnetic and semiconducting nanowires. Science. 303(5655) 213-17.</p> <p> &nbsp;</p> <p> Simulations</p> <p style="margin-left:36.0pt;"> 1.&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Meller. J. 2001. Molecular Dynamics. Encyclopedia of Life Sciences [<a href="http://dasher.wustl.edu/chem478/reading/md-intro-1.pdf">http://dasher.wustl.edu/chem478/reading/md-intro-1.pdf</a>]</p> <p style="margin-left:36.0pt;"> 2.&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Thirumalai. D. 1995. From Minimal Models to Real Proteins: Time Scales for Protein Folding Kinetics. Journal of Physiology. 5. 1457-67.</p> <p style="margin-left:36.0pt;"> 3.&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Metropolis, N., Ulam. S. 1949. The Monte Carlo Method.. Journal of the American Statistical Association. 44(247)</p> <p style="margin-left:36.0pt;"> 4.&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Anderson, E. C. 1999. Monte Carlo Methods and Importance Sampling, Statistical Genetics.</p> <p style="margin-left:36.0pt;"> 5.&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Frenkel D.&nbsp; Smit, B., 2002. Understanding Molecular Simulations: From algorithms to applications, Second Edition, Academic Press</p> <p style="margin-left:36.0pt;"> 6.&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Koopman, E. A. and Lowe, C. P. 2006. Advantages of a Lowe-Andersen thermostat in molecular dynamics simulations. J. Chem. Phys., 124:204103.</p> <p style="margin-left:18.0pt;"> &nbsp;</p> <p> Reactor</p>

<p style="margin-left:36.0pt;">

1.&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Fogler H. S., 2006. Elements of Chemical Reaction Engineering 4th Edition, Pretince Hall, pages 37-45 </p> <p style="margin-left:36.0pt;">2.&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Bird R. B, Stewart W. E., and Lightfoot E. N. 2006. Fenómenos de Trasporte, Reverté Ediciones SA de CV , pages 17-9 – 17-11. </p> <p style="margin-left:36.0pt;">3.&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Geankoplis, C. J., Procesos de transporte y principios de procesos de separación, 4th Edition. Continental, 449-451 </p> <p style="margin-left:36.0pt;">3.&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Hines, A. L., and Maddox, R. N. 1985. Mass Transfer Fundamentals and Applications, Prentince Hall PTR 34-35 </p> <p style="margin-left:36.0pt;">4.&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Poling, B. E., Prausnitz, J. M., and O’Connel, J. P. 2001. The Properties of Gases and Liquids, 5th Edition. McGrawl-Hill, 2.26,10.45-10.46, C.2-C.4 </p> <p style="margin-left:36.0pt;">5.&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Hoffman, J. D. 2001. Numerical Methods for Engineers and Scientists, 2th Edition. Marcel Decker, Inc., 355-359</p>

<p> &nbsp;</p> <p> Enzyme</p> <p style="margin-left:36.0pt;"> 1.&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Veitch, N. C. 2004. Horseradish Peroxidase: a modern view of a classic enzyme. Phytochemistry &nbsp;65(3) 249-259</p> <p style="margin-left:36.0pt;"> 2.&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Moody, A. 2004. Rapid Diagnostics Tests for Malaria Parasites. Clinical Microbiology Review 15(1) 66-78</p> <p style="margin-left:36.0pt;"> 3.&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; EnzMet&trade; HRP Detection Kit for IHC / ISH - Nanoprobes [Internet - <a href="http://www.nanoprobes.com/pdf/Inf6001.pdf">http://www.nanoprobes.com/pdf/Inf6001.pdf</a>]</p> <p style="margin-left:36.0pt;"> 4.&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Blake, D. A., McLean, N. V. 1989. A colorimetric assay for the measurement of D-glucose consuption by cultured cells. Analytical Biochemistry 177(1)</p> <p style="margin-left:36.0pt;"> 5.&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Aragones, M. C., Engelkamp, H., Claessen, V. I., Sommerdijk, N. a. j. m., Rowan, A. E., Christianen, P. C. M, Maan, J. C., Verduin, B. J. M., Cornelissen, J J. L. M., and Nolte. R. J. M. 2007. A virus-based single-enzyme nanoreactor. Nature Nanotechnology, 2:635-39</p> <p style="margin-left:36.0pt;"> 6.&nbsp;&nbsp;&nbsp;&nbsp; Arfken, G. 1985. Mathematical Methods for Physicists, 3rd ed. Orlando, FL: Academic Press, pp. 492-493,</p> <p style="margin-left:36.0pt;"> 7.&nbsp;&nbsp;&nbsp;&nbsp; Murray, R. K., Granner, D. K., Mayes, P. A., Rodwell, and V. W., Harper&rsquo;s Illustrated Biochemistry 26th Ed,</p> <p style="margin-left:36.0pt;"> 8.&nbsp;&nbsp;&nbsp;&nbsp; Johnston, W. K., Unrau P. J., Lawrence MS, Glasner M. E., and Bartel D. P. 2001. RNA-catalyzed RNA polymerization: accurate and general RNA-templated primer extension. &nbsp;Science 292 (5520): 1319&ndash;1325.</p> <p style="margin-left:36.0pt;"> 9.&nbsp;&nbsp;&nbsp;&nbsp; Wolfenden, R., and Snyder, M. J., Acc. Chem. Res. 2001, 34, 938

<p style="margin-left:36.0pt;">

10.&nbsp;&nbsp;&nbsp; Daniel R. M., Peterson M. E., Danson M. J., Prince, N. C., Kelly, S. M., Monk, C. R., Weinberg, C. S., Oudshoorn, M. L., and Lee, C. K. 2009. The molecular basis of the effect of temperature on enzyme activity. Biochem. J. 425 (2): 353&ndash;60.</p>

<p style="margin-left:36.0pt;">

11.&nbsp;&nbsp;&nbsp; Bettelheim, F. A., Brown, W. H., Campbell, M. K., Farrell, S. O., and Torres, O. J. 2013. Introduction to Organic and Biochemistry, 8th ed. Books/Cole Cengage Learning. </p><p>

&nbsp;</p> <p> Nucleation</p> <p style="margin-left:36.0pt;"> 1. &nbsp;&nbsp;Embden, J., Sader, J. E., Davidson, M., and Mulvaney, P. 2009. Evolution of Colloidal Nanocrystals: Theory and Modelling of their Nucleation and Growth. J. Phys. Chem. C, 113, 16342-55.</p></p> <p> &nbsp;</p> </body> </html>