Biomod/2013/NanoUANL/Reactor: Difference between revisions

From OpenWetWare
Jump to navigationJump to search
No edit summary
No edit summary
Line 76: Line 76:
<span style="font-family:trebuchet ms,helvetica,sans-serif;"><span style="font-size: 12px;">where </span></span></p>
<span style="font-family:trebuchet ms,helvetica,sans-serif;"><span style="font-size: 12px;">where </span></span></p>
<p>
<p>
<span style="font-family:trebuchet ms,helvetica,sans-serif;"><span style="font-size: 12px;">Input = </span></span></p>
<span style="font-family:trebuchet ms,helvetica,sans-serif;"><span style="font-size: 12px;">Input =F<sub>0,&nbsp;</sub>Appearance =V(r<sub>P</sub>), Disappearance =V(-r<sub>S</sub>) and Accumulation = \(\frac{d[P]}{dt}\)</span></span></p>  
<p>
 
<span style="font-family:trebuchet ms,helvetica,sans-serif;"><span style="font-size: 12px;">F<sub>0</sub> </span></span></p>
\begin{equation}
<p>
\frac{d[P]}{dt}=F_0+V(r_P)-V(-r_S)
<span style="font-family:trebuchet ms,helvetica,sans-serif;"><span style="font-size: 12px;">Appearance = </span></span></p>
\end{equation}
<p>
 
<span style="font-family:trebuchet ms,helvetica,sans-serif;"><span style="font-size: 12px;">V(r<sub>P</sub>) </span></span></p>
<p>
<p>
<span style="font-family:trebuchet ms,helvetica,sans-serif;"><span style="font-size: 12px;">The inlet flow was determined by diffusion. A mass balance, applied to a spherical envelope is described as:</span></span></p>
<span style="font-family:trebuchet ms,helvetica,sans-serif;"><span style="font-size: 12px;">Disappearance = </span></span></p>
 
<p>
\begin{equation}
<span style="font-family:trebuchet ms,helvetica,sans-serif;"><span style="font-size: 12px;">V(-r<sub>S</sub>) </span></span></p>
\frac{d}{dr}(r^2N_{Ar})=0
<p>
\end{equation}
<span style="font-family:trebuchet ms,helvetica,sans-serif;"><span style="font-size: 12px;">Accumulation =&nbsp;</span></span></p>
 
<p>
<span style="font-family:trebuchet ms,helvetica,sans-serif;"><span style="font-size: 12px;">where N<sub>Ar</sub> represents molar flux. When N<sub>Br</sub>=0 we obtain</span></span></p>
 
\begin{equation}
\frac{d}{dr}(r^2\frac{cD_{AB}}{1-x_A}\frac{dx_A}{dr})=0
\end{equation}
 
<p>
<span style="font-family:trebuchet ms,helvetica,sans-serif;"><span style="font-size: 12px;">At a constant temperature the product (cD<sub>AB</sub>) is equally constant and x<sub>A</sub>=1-x<sub>B</sub>, the equation can be integrated into the following expression:</span></span></p>
 
\begin{equation}
F_A=4\pi r_1^2N_{Ar}|_{r=r1}=
\frac{4\pi cD_{AB}}{1/r_1-1/r_2}
\ln\frac{x_{B2}}{x_{B1}}
\end{equation}


</body>
</body>
</html>
</html>

Revision as of 16:57, 26 October 2013

<html> <head> <link href='css/left_menu.css' rel='stylesheet' type='text/css'> </head>

<style> .main_cont { float:left; width:150px; background-color:#4d7986; padding:10px; } .menu_top_bg { width:150px; background:url(http://www.cssblog.es/images/menu_top_bg.gif) repeat-x; height:22px; padding-top:8px; font-family:Verdana, Arial, Helvetica, sans-serif; font-size:12px; color:#FFFFFF; font-weight:bold; text-align:center; margin-bottom:1px; } .sub_menu ul { padding:0px; margin:0px; } .sub_menu ul li { font-family:Arial, Helvetica, sans-serif; font-size:11px; color:#FFFFFF; line-height:32px; border-bottom:1px dotted #93bcc3; list-style-type:none; text-indent:8px; } .sub_menu ul li a { text-decoration:none; color:#FFFFFF; } .sub_menu ul li a.selected { background:url(http://www.cssblog.es/images/menu_selected.png) no-repeat; float:left; width:242px; height:32px; } .sub_menu ul li a:hover { background:url(http://www.cssblog.es/images/menu_selected.png) no-repeat; float:left; width:150px; height:30px; } - See more at: http://www.cssblog.es/disenando-un-bonito-menu-vertical-con-css/#sthash.AWv2bSbm.dpuf

  1. pagecontent

{

 float: left;
 width: 620px;
 margin-left: 300px;
 min-height: 400px

} </style>

</html>

http://openwetware.org/images/c/c9/UANL_Banner2.png

<html> <!-- MathJax (LaTeX for the web) --> <script type="text/x-mathjax-config"> MathJax.Hub.Config({tex2jax: {inlineMath: [['$','$'], ['\\(','\\)']]}}); MathJax.Hub.Config({ TeX: { equationNumbers: { autoNumber: "AMS" } } }); </script> <script type="text/javascript" src="http://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script> <head> <title>HTML Editor Sample Page</title> </head> <body> <p style="text-align: center;"> <img alt="" src="http://openwetware.org/images/7/73/UANLReactor1.png" style="width: 475px; height: 402px;" /></p> <p> &nbsp;</p> <p> &nbsp;</p> <p> <strong><span style="font-size:12px;"><span style="font-family: trebuchet ms,helvetica,sans-serif;">Theory</span></span></strong></p> <p> <span style="font-size:12px;"><span style="font-family: trebuchet ms,helvetica,sans-serif;">To describe the dynamic behavior of a Semi-Continuous Tank Reactor (SCTR) mass, component and energy balance equations must be developed. This requires an understanding of the functional expressions that describe chemical reaction. A reaction will create new components while simultaneously reducing reactant concentrations. The reaction may give off heat or my require energy to proceed.</span></span></p> <p> <span style="font-size:12px;"><span style="font-family: trebuchet ms,helvetica,sans-serif;">To develop a realistic SCTR model the change of individual species (or components) with respect to time must be considered. This is because individual components can appear / disappear because of reaction (remember that the overall mass of reactants and products will always stay the same). If there are N components, N &ndash; 1 component balances and an overall mass balance expression are required. Alternatively a component balance may be written for each species.</span></span></p> <p> <span style="font-size:12px;"><span style="font-family: trebuchet ms,helvetica,sans-serif;">In certain SCTR&acute;s (generally small vessels) the wall dynamics can have a significant effect on the thermal control and stability of a SCTR. If this is the case then an energy balance expression should be developed describing the rate of change of wall temperature with respect to time, assuming that the wall temperature is the same at any point.</span></span></p> <p> &nbsp;</p> <p> <strong><span style="font-size:14px;"><span style="font-family: trebuchet ms,helvetica,sans-serif;">Idea</span></span></strong></p> <p> <span style="font-size:12px;"><span style="font-family: trebuchet ms,helvetica,sans-serif;">For an ideal approach, the CCMV capsid could be considered as reactor with an accumulation of the product inside the capsid. An analysis of a reactor is a common in chemical engineering. The reactor proposed is a complete opposite type from tubular plug-flow and stirred batch reactors, or a continuous stirred tank reactor and can be very useful when studying the behavior of a gas, liquid or solid.</span></span></p> <p> <span style="font-size:12px;"><span style="font-family: trebuchet ms,helvetica,sans-serif;">The reactor&#39;s behavior is modeled by a Semi-Continuous Tank Reactor, assuming perfect mixing in the container.</span></span></p> <h2> <span style="font-size:16px;"><span style="font-family: trebuchet ms,helvetica,sans-serif;"><span class="mw-headline">Why is this a reactor? </span></span></span></h2> <h3> <span style="font-size:14px;"><span style="font-family: trebuchet ms,helvetica,sans-serif;"><span class="mw-headline">Introduction </span></span></span></h3> <p> <span style="font-family:trebuchet ms,helvetica,sans-serif;"><span style="font-size: 12px;">For an ideal approach, the CCMV capsid could be considered as reactor with an accumulation of the product inside the capsid. An analysis of a reactor is a common in chemical engineering. The reactor proposed is a complete opposite type from tubular plug-flow and stirred batch reactors, or a continuous stirred tank reactor and can be very useful when studying the behavior of a gas, liquid or solid.</span></span></p> <p> <span style="font-family:trebuchet ms,helvetica,sans-serif;"><span style="font-size: 12px;">The reactor&#39;s behavior is modeled by a Semi-Continuous Tank Reactor, assuming perfect mixing in the container.</span></span></p> <h4> <span style="font-size:14px;"><span style="font-family: trebuchet ms,helvetica,sans-serif;"><span class="mw-headline">Enzymatic Reaction</span></span></span></h4> <p> <span style="font-family:trebuchet ms,helvetica,sans-serif;"><span style="font-size: 12px;">The general reaction scheme is described as follows:</span></span></p> \begin{equation} E + S \leftrightarrow ES \rightarrow E^0 + P \end{equation} <p> <span style="font-family:trebuchet ms,helvetica,sans-serif;"><span style="font-size: 12px;">With a reaction rate of:</span></span></p> \begin{equation} \frac{d[ES]}{dt}=k_1[E][S]-k_{-1}[ES]-k_2[ES] \end{equation} <p> <span style="font-family:trebuchet ms,helvetica,sans-serif;"><span style="font-size: 12px;">This equation is affected by the constants k<sub>1</sub> , k<sub>-1</sub> and k<sub>2</sub>.</span></span></p> <p> &nbsp;</p> <p> <strong><span style="font-size:14px;"><span style="font-family: trebuchet ms,helvetica,sans-serif;">Mass balance</span></span></strong></p> <p> <span style="font-family:trebuchet ms,helvetica,sans-serif;"><span style="font-size: 12px;">Material balances are important, as a first step in devising a new process (or analyzing an existing one). They are almost always a prerequisite for all calculations for process engineering problems. The concept of mass balance is based on the physical principle that matter cannot be either created nor destroyed, only transformed. The law of mass transformation balances describe the mass of the inputs of the process with the output, as waste, products or emissions. This whole process is accounting for the material used in a reaction. Applying a mass balance to our system we obtained: </span></span></p> <p style="text-align: center;"> <span style="font-family:trebuchet ms,helvetica,sans-serif;"><span style="font-size: 12px;">ACCUMULATION = INPUT + APPEARANCE BY REACTION - DISAPPEARANCE BY REACTION </span></span></p> <p> <span style="font-family:trebuchet ms,helvetica,sans-serif;"><span style="font-size: 12px;">where </span></span></p> <p> <span style="font-family:trebuchet ms,helvetica,sans-serif;"><span style="font-size: 12px;">Input =F<sub>0,&nbsp;</sub>Appearance =V(r<sub>P</sub>), Disappearance =V(-r<sub>S</sub>) and Accumulation = \(\frac{d[P]}{dt}\)</span></span></p> \begin{equation} \frac{d[P]}{dt}=F_0+V(r_P)-V(-r_S) \end{equation} <p> <span style="font-family:trebuchet ms,helvetica,sans-serif;"><span style="font-size: 12px;">The inlet flow was determined by diffusion. A mass balance, applied to a spherical envelope is described as:</span></span></p> \begin{equation} \frac{d}{dr}(r^2N_{Ar})=0 \end{equation} <p> <span style="font-family:trebuchet ms,helvetica,sans-serif;"><span style="font-size: 12px;">where N<sub>Ar</sub> represents molar flux. When N<sub>Br</sub>=0 we obtain</span></span></p> \begin{equation} \frac{d}{dr}(r^2\frac{cD_{AB}}{1-x_A}\frac{dx_A}{dr})=0 \end{equation} <p> <span style="font-family:trebuchet ms,helvetica,sans-serif;"><span style="font-size: 12px;">At a constant temperature the product (cD<sub>AB</sub>) is equally constant and x<sub>A</sub>=1-x<sub>B</sub>, the equation can be integrated into the following expression:</span></span></p> \begin{equation} F_A=4\pi r_1^2N_{Ar}|_{r=r1}= \frac{4\pi cD_{AB}}{1/r_1-1/r_2} \ln\frac{x_{B2}}{x_{B1}} \end{equation} </body> </html>