Biomod/2012/UT/Nanowranglers/References

From OpenWetWare

< Biomod | 2012 | UT/Nanowranglers(Difference between revisions)
Jump to: navigation, search
(Please fill out references)
Current revision (22:37, 27 October 2012) (view source)
(Related work)
 
(36 intermediate revisions not shown.)
Line 1: Line 1:
{{Template:Biomod/2012/UT/Nanowranglers}}
{{Template:Biomod/2012/UT/Nanowranglers}}
-
== Please fill out references ==
+
=Related work=
-
<html>
+
For prior work on designing DNA walkers, please see [2][3][10][21][23][24][30][35][43][44][50][51][53][56][62].
-
Quick links for navigation: <a href="#A">A</a>
+
-
<a href="#B">B</a>
+
-
<a href="#C">C</a>
+
-
<a href="#D">D</a>
+
-
<a href="#E">E</a>
+
-
<a href="#F">F</a>
+
-
<a href="#G">G</a>
+
-
<a href="#H">H</a>
+
-
<a href="#I">I</a>
+
-
<a href="#J">J</a>
+
-
<a href="#K">K</a>
+
-
<a href="#L">L</a>
+
-
<a href="#M">M</a>
+
-
<a href="#N">N</a>
+
-
<a href="#O">O</a>
+
-
<a href="#P">P</a>
+
-
<a href="#Q">Q</a>
+
-
<a href="#R">R</a>
+
-
<a href="#S">S</a>
+
-
<a href="#T">T</a>
+
-
<a href="#U">U</a>
+
-
<a href="#V">V</a>
+
-
<a href="#W">W</a>
+
-
<a href="#X">X</a>
+
-
<a href="#Y">Y</a>
+
-
<a href="#Z">Z</a>
+
-
<span id = "A" ></span>
+
-
<span id = "B" ></span>
+
-
<span id = "C" ></span>
+
-
<span id = "D" ></span>
+
-
<span id = "E" ></span>
+
-
<span id = "F" ></span>
+
-
<span id = "G" ></span>
+
-
<span id = "H" ></span>
+
-
<span id = "I" ></span>
+
-
<span id = "J" ></span>
+
-
<span id = "K" ></span>
+
-
<span id = "L" ></span>
+
-
<span id = "N" ></span>
+
-
<span id = "O" ></span>
+
-
<span id = "P" ></span>
+
-
<span id = "Q" ></span>
+
-
<span id = "R" ></span>
+
-
<span id = "S" ></span>
+
-
<span id = "T" ></span>
+
-
<span id = "U" ></span>
+
-
<span id = "V" ></span>
+
-
<span id = "W" ></span>
+
-
<span id = "X" ></span>
+
-
<span id = "Y" ></span>
+
-
<span id = "Z" ></span>
+
-
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Donec a diam lectus. Sed sit amet ipsum mauris. Maecenas congue ligula ac quam viverra nec consectetur ante hendrerit. Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit. Aenean ut gravida lorem. Ut turpis felis, pulvinar a semper sed, adipiscing id dolor. Pellentesque auctor nisi id magna consequat sagittis. Curabitur dapibus enim sit amet elit pharetra tincidunt feugiat nisl imperdiet. Ut convallis libero in urna ultrices accumsan. Donec sed odio eros. Donec viverra mi quis quam pulvinar at malesuada arcu rhoncus. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. In rutrum accumsan ultricies. Mauris vitae nisi at sem facilisis semper ac in est.
+
For functional biological motors in cells, please see Myosins [40][39][30], Kinesins [61][8], dyneins [54][19][7], bacterial flagella motors [5][18][52],ATP synthases [42][57][25].
-
Vivamus fermentum semper porta. Nunc diam velit, adipiscing ut tristique vitae, sagittis vel odio. Maecenas convallis ullamcorper ultricies. Curabitur ornare, ligula semper consectetur sagittis, nisi diam iaculis velit, id fringilla sem nunc vel mi. Nam dictum, odio nec pretium volutpat, arcu ante placerat erat, non tristique elit urna et turpis. Quisque mi metus, ornare sit amet fermentum et, tincidunt et orci. Fusce eget orci a orci congue vestibulum. Ut dolor diam, elementum et vestibulum eu, porttitor vel elit. Curabitur venenatis pulvinar tellus gravida ornare. Sed et erat faucibus nunc euismod ultricies ut id justo. Nullam cursus suscipit nisi, et ultrices justo sodales nec. Fusce venenatis facilisis lectus ac semper. Aliquam at massa ipsum. Quisque bibendum purus convallis nulla ultrices ultricies. Nullam aliquam, mi eu aliquam tincidunt, purus velit laoreet tortor, viverra pretium nisi quam vitae mi. Fusce vel volutpat elit. Nam sagittis nisi dui.
+
For CHA please see [9][15][62].
-
Suspendisse lectus leo, consectetur in tempor sit amet, placerat quis neque. Etiam luctus porttitor lorem, sed suscipit est rutrum non. Curabitur lobortis nisl a enim congue semper. Aenean commodo ultrices imperdiet. Vestibulum ut justo vel sapien venenatis tincidunt. Phasellus eget dolor sit amet ipsum dapibus condimentum vitae quis lectus. Aliquam ut massa in turpis dapibus convallis. Praesent elit lacus, vestibulum at malesuada et, ornare et est. Ut augue nunc, sodales ut euismod non, adipiscing vitae orci. Mauris ut placerat justo. Mauris in ultricies enim. Quisque nec est eleifend nulla ultrices egestas quis ut quam. Donec sollicitudin lectus a mauris pulvinar id aliquam urna cursus. Cras quis ligula sem, vel elementum mi. Phasellus non ullamcorper urna.
+
For software used, please see GIDEON [4] and Kintek [26].
-
Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos himenaeos. In euismod ultrices facilisis. Vestibulum porta sapien adipiscing augue congue id pretium lectus molestie. Proin quis dictum nisl. Morbi id quam sapien, sed vestibulum sem. Duis elementum rutrum mauris sed convallis. Proin vestibulum magna mi. Aenean tristique hendrerit magna, ac facilisis nulla hendrerit ut. Sed non tortor sodales quam auctor elementum. Donec hendrerit nunc eget elit pharetra pulvinar. Suspendisse id tempus tortor. Aenean luctus, elit commodo laoreet commodo, justo nisi consequat massa, sed vulputate quam urna quis eros. Donec vel.
+
=References=
-
</html>
+
#  Barish, R. D., Rothemund, P. W. K. & Winfree, E. Two computational primitives for algorithmic self-assembly: copying and counting. Nano letters 5, 2586–92 (2005).
 +
#  Bath, J., Green, S. J. & Turberfield, A. J. A Free-Running DNA Motor Powered by a Nicking Enzyme. Angewandte Chemie 117, 4432–4435 (2005).
 +
#  Bath, J., Green, S. J., Allen, K. E. & Turberfield, A. J. Mechanism for a directional, processive, and reversible DNA motor. Small (Weinheim an der Bergstrasse, Germany) 5, 1513–6 (2009).
 +
#  Birac, J. J., Sherman, W. B., Kopatsch, J., Constantinou, P. E. & Seeman, N. C. Architecture with GIDEON, a program for design in structural DNA nanotechnology. Journal of molecular graphics & modelling 25, 470–80 (2006).
 +
#  Block, S., Blair, D. & Berg, H. Compliance of bacterial flagella measured with optical tweezers. Nature 338, 514 (1989).
 +
#  Brun, Y. Solving NP-complete problems in the tile assembly model. Theoretical Computer Science 395, 31–46 (2008).
 +
#  Carter, A. et al. Structure and Functional Role of Dynein’s Microtubule-Binding Domain. Science 322, 1691–1695 (2008).
 +
#  Carter, N. J. & Cross, R. a Mechanics of the kinesin step. Nature 435, 308–12 (2005).
 +
#  Chen, X. & Ellington, A. D. Shaping up nucleic acid computation. Current opinion in biotechnology 21, 392–400 (2010).
 +
#  Chhabra, R., Sharma, J., Liu, Y. & Yan, H. Addressable molecular tweezers for DNA-templated coupling reactions. Nano letters 6, 978–83 (2006).
 +
#  Choi, H. M. T. et al. Programmable in situ amplification for multiplexed imaging of mRNA expression. Nature biotechnology 28, 1208–12 (2010).
 +
#  Dietz, H., Douglas, S. M. & Shih, W. M. Folding DNA into twisted and curved nanoscale shapes. Science (New York, N.Y.) 325, 725–30 (2009).
 +
#  Dimroth, P., Wang, H., Grabe, M. & Oster, G. Energy transduction in the sodium F-ATPase of Propionigenium modestum. Proceedings of the National Academy of Sciences of the United States of America 96, 4924–9 (1999).
 +
#  Ding, B. et al. Gold nanoparticle self-similar chain structure organized by DNA origami. Journal of the American Chemical Society 132, 3248–9 (2010).
 +
#  Dirks, R. M. & Pierce, N. a Triggered amplification by hybridization chain reaction. Proceedings of the National Academy of Sciences of the United States of America 101, 15275–8 (2004).
 +
#  Douglas, S. M., Bachelet, I. & Church, G. M. A logic-gated nanorobot for targeted transport of molecular payloads. Science (New York, N.Y.) 335, 831–4 (2012).
 +
#  Douglas, S. M. et al. Self-assembly of DNA into nanoscale three-dimensional shapes. Nature 459, 414–8 (2009).
 +
#  Fahrner, K., Ryu, W. S. & Berg, H. C. Bacterial flagellar switching under load. Nature 423, 938 (2003).
 +
#  Gennerich, A., Carter, A. P., Reck-Peterson, S. L. & Vale, R. D. Force-induced bidirectional stepping of cytoplasmic dynein. Cell 131, 952–65 (2007).
 +
#  Glotzer, S. C. Self-Assembly of Patchy Particles. Nano Letters 4, 1407–1413 (2004).
 +
#  Green, S., Bath, J. & Turberfield, a. Coordinated Chemomechanical Cycles: A Mechanism for Autonomous Molecular Motion. Physical Review Letters 101, 20–23 (2008).
 +
#  Grierer, A. Model for DNA and Protein Interaction and the Function of the Operator. Nature 212, 1480 (1966).
 +
#  Gu, H., Chao, J., Xiao, S.-J. & Seeman, N. C. A proximity-based programmable DNA nanoscale assembly line. Nature 465, 202–5 (2010).
 +
#  He, Y. & Liu, D. R. Autonomous multistep organic synthesis in a single isothermal solution mediated by a DNA walker. Nature nanotechnology 5, 778–82 (2010).
 +
#  Itoh, H. et al. Mechanically driven ATP synthesis by F 1 -ATPase. Nature 427, 465–468 (2004).
 +
#  Johnson, K. A. Transient state kinetic analysis of enzyme reaction pathways. The Enzymes XX, 1-61 (1992).
 +
#  Kallenbach, N. R., Ma, R.-I. & Seeman, N. C. An immobile nucleic acid junction constructed from oligonucleotides. Nature 305, 829 (1983).
 +
#  Kallenbach, N. R., Petrillol, M. L. & Laboratories, L. Three-arm nucleic acid junctions are flexible. Nucleic acids research 14, 9745–9753 (1986).
 +
#  Kelly, T. R. Molecular motors: synthetic DNA-based walkers inspired by kinesin. Angewandte Chemie (International ed. in English) 44, 4124–7 (2005).
 +
#  Kinbara, K. & Aida, T. Toward intelligent molecular machines: directed motions of biological and artificial molecules and assemblies. Chemical reviews 105, 1377–400 (2005).
 +
#  Li, B., Ellington, A. D. & Chen, X. Rational, modular adaptation of enzyme-free DNA circuits to multiple detection methods. Nucleic acids research 39, e110 (2011).
 +
#  Liu, C., Jonoska, N. & Seeman, N. C. Reciprocal DNA nanomechanical devices controlled by the same set strands. Nano letters 9, 2641–7 (2009).
 +
#  Liu, H., Chen, Y., He, Y., Ribbe, A. E. & Mao, C. Approaching The Limit: Can One DNA Oligonucleotide Assemble into Large Nanostructures? Angewandte Chemie 118, 1976–1979 (2006).
 +
#  Lu, Y. & Liu, J. Functional DNA nanotechnology: emerging applications of DNAzymes and aptamers. Current opinion in biotechnology 17, 580–8 (2006).
 +
#  Lund, K. et al. Molecular robots guided by prescriptive landscapes. Nature 465, 206–10 (2010).
 +
#  Macfarlane, R. J. et al. Nanoparticle superlattice engineering with DNA. Science (New York, N.Y.) 334, 204–8 (2011).
 +
#  Mao, C., Sun, W., Shen, Z. & Seeman, N. C. A nanomechanical device based on the B-Z transition of DNA. Nature 397, 144–6 (1999).
 +
#  McNaughton, B. R., Cronican, J. J., Thompson, D. B. & Liu, D. R. Mammalian cell penetration, siRNA transfection, and DNA transfection by supercharged proteins. Proceedings of the National Academy of Sciences of the United States of America 106, 6111–6 (2009).
 +
#  Mehta, a D. et al. Myosin-V is a processive actin-based motor. Nature 400, 590–3 (1999).
 +
#  Mermall, V., Post, P. L. & Mooseker, M. S. Unconventional Myosins in Cell Movement, Memrane Traffic, and Signal Transduction. Science 279, 527 (1998).
 +
#  Mirkin, C. A. Programming the Assembly of Two- and Three-Dimensional Architectures with DNA and Nanoscale Inorganic Building Blocks. Inorg. Chem. 39, 2258–2272 (2000).
 +
#  Noji, H., Yasuda, R., Yoshida, M. & Kinosita, K. J. Direct observation of the rotation of F1-ATPase. Nature 386, 299 (1997).
 +
#  Omabegho, T., Sha, R. & Seeman, N. C. A bipedal DNA Brownian motor with coordinated legs. Science (New York, N.Y.) 324, 67–71 (2009).
 +
#  Pei, R. et al. Behavior of Polycatalytic Assemblies in a Substrate-Displaying Matrix Nanoassembly Incorporating Catalytic Kinesis because they couple diffusion ( movement ) to a catalytic process . For example ,. Journal of the American Chemical Society 128, 12693–12699 (2006).
 +
#  Peng, X. et al. A nonfluorescent, broad-range quencher dye for Förster resonance energy transfer assays. Analytical biochemistry 388, 220–8 (2009).
 +
#  Rothemund, P. W. K. Folding DNA to create nanoscale shapes and patterns. Nature 440, 297–302 (2006).
 +
#  Seeman, N. C. The use of branched DNA for nanoscale fabrication. Nanotechnology 149 (1991).
 +
#  Seeman, N. C. DNA engineering and its application to nanotechnology. Trends in Biotechnology 7799, 437–443 (1999).
 +
#  Seeman, N. C. & Kallenbach, N. R. Design of immobile nucleic acid junctions. Biophysics 44, 201–209 (1983).
 +
#  Sherman, W. B. & Seeman, N. C. A Precisely Controlled DNA Biped Walking Device. Nano Letters 4, 1203–1207 (2004).
 +
#  Shin, J.-S. & Pierce, N. a A synthetic DNA walker for molecular transport. Journal of the American Chemical Society 126, 10834–5 (2004).
 +
#  Sowa, Y. et al. Direct observation of steps in rotation of the bacterial flagellar motor. Nature 437, 916–9 (2005).
 +
#  Tian, Y., He, Y., Chen, Y., Yin, P. & Mao, C. A DNAzyme that walks processively and autonomously along a one-dimensional track. Angewandte Chemie (International ed. in English) 44, 4355–8 (2005).
 +
#  Vale, R. D. The molecular motor toolbox for intracellular transport. Cell 112, 467–80 (2003).
 +
#  Vale, R. D., Funatsu, T., Pierce, D. W. & Romberg, L. Direct observation of single kinesin molecules moving along microtubules. Nature 380, 451–453 (1996).
 +
#  Venkataraman, S., Dirks, R. M., Rothemund, P. W. K., Winfree, E. & Pierce, N. a An autonomous polymerization motor powered by DNA hybridization. Nature nanotechnology 2, 490–4 (2007).
 +
#  Wang H, Oster G. 1998. Energy transduction in the F1 motor of ATP synthase. Nature 396:279–82
 +
#  Wei, B., Dai, M. & Yin, P. Complex shapes self-assembled from single-stranded DNA tiles. Nature 485, 623–6 (2012).
 +
#  Wendt, T. G. et al. Microscopic evidence for a minus-end-directed power stroke in the kinesin motor ncd. The EMBO journal 21, 5969–78 (2002).
 +
#  Woo, S. & Rothemund, P. W. K. Programmable molecular recognition based on the geometry of DNA nanostructures. Nature chemistry 3, 620–7 (2011).
 +
#  Yildiz, A., Tomishige, M., Vale, R. D. & Selvin, P. R. Kinesin walks hand-over-hand. Science (New York, N.Y.) 303, 676–8 (2004).
 +
#  Yin, P., Choi, H. M. T., Calvert, C. R. & Pierce, N. a Programming biomolecular self-assembly pathways. Nature 451, 318–22 (2008).
 +
#  Yurke, B., Turber, A. J., Jr, A. P. M., Simmel, F. C. & Neumann, J. L. A DNA-fuelled molecular machine made of DNA. Nature 406, 605–608 (2000).
 +
#  Zhang, D. Y., Turberfield, A. J., Yurke, B. & Winfree, E. Engineering entropy-driven reactions and networks catalyzed by DNA. Science (New York, N.Y.) 318, 1121–5 (2007).
 +
#  Zhang, D. Y. & Winfree, E. Control of DNA strand displacement kinetics using toehold exchange. Journal of the American Chemical Society 131, 17303–14 (2009).
 +
#  Zhang, D. Y. & Winfree, E. Robustness and modularity properties of a non-covalent DNA catalytic reaction. Nucleic acids research 38, 4182–97 (2010).
 +
#  Zheng, J. et al. From Molecular to Macroscopic via the Rational Design of a Self-Assembled 3D DNA Crystal. Nature 461, 74–77 (2009).

Current revision


Undergraduate DNA nanotechnology research group from the University of Texas at Austin



Related work

For prior work on designing DNA walkers, please see [2][3][10][21][23][24][30][35][43][44][50][51][53][56][62].

For functional biological motors in cells, please see Myosins [40][39][30], Kinesins [61][8], dyneins [54][19][7], bacterial flagella motors [5][18][52],ATP synthases [42][57][25].

For CHA please see [9][15][62].

For software used, please see GIDEON [4] and Kintek [26].

References

  1. Barish, R. D., Rothemund, P. W. K. & Winfree, E. Two computational primitives for algorithmic self-assembly: copying and counting. Nano letters 5, 2586–92 (2005).
  2. Bath, J., Green, S. J. & Turberfield, A. J. A Free-Running DNA Motor Powered by a Nicking Enzyme. Angewandte Chemie 117, 4432–4435 (2005).
  3. Bath, J., Green, S. J., Allen, K. E. & Turberfield, A. J. Mechanism for a directional, processive, and reversible DNA motor. Small (Weinheim an der Bergstrasse, Germany) 5, 1513–6 (2009).
  4. Birac, J. J., Sherman, W. B., Kopatsch, J., Constantinou, P. E. & Seeman, N. C. Architecture with GIDEON, a program for design in structural DNA nanotechnology. Journal of molecular graphics & modelling 25, 470–80 (2006).
  5. Block, S., Blair, D. & Berg, H. Compliance of bacterial flagella measured with optical tweezers. Nature 338, 514 (1989).
  6. Brun, Y. Solving NP-complete problems in the tile assembly model. Theoretical Computer Science 395, 31–46 (2008).
  7. Carter, A. et al. Structure and Functional Role of Dynein’s Microtubule-Binding Domain. Science 322, 1691–1695 (2008).
  8. Carter, N. J. & Cross, R. a Mechanics of the kinesin step. Nature 435, 308–12 (2005).
  9. Chen, X. & Ellington, A. D. Shaping up nucleic acid computation. Current opinion in biotechnology 21, 392–400 (2010).
  10. Chhabra, R., Sharma, J., Liu, Y. & Yan, H. Addressable molecular tweezers for DNA-templated coupling reactions. Nano letters 6, 978–83 (2006).
  11. Choi, H. M. T. et al. Programmable in situ amplification for multiplexed imaging of mRNA expression. Nature biotechnology 28, 1208–12 (2010).
  12. Dietz, H., Douglas, S. M. & Shih, W. M. Folding DNA into twisted and curved nanoscale shapes. Science (New York, N.Y.) 325, 725–30 (2009).
  13. Dimroth, P., Wang, H., Grabe, M. & Oster, G. Energy transduction in the sodium F-ATPase of Propionigenium modestum. Proceedings of the National Academy of Sciences of the United States of America 96, 4924–9 (1999).
  14. Ding, B. et al. Gold nanoparticle self-similar chain structure organized by DNA origami. Journal of the American Chemical Society 132, 3248–9 (2010).
  15. Dirks, R. M. & Pierce, N. a Triggered amplification by hybridization chain reaction. Proceedings of the National Academy of Sciences of the United States of America 101, 15275–8 (2004).
  16. Douglas, S. M., Bachelet, I. & Church, G. M. A logic-gated nanorobot for targeted transport of molecular payloads. Science (New York, N.Y.) 335, 831–4 (2012).
  17. Douglas, S. M. et al. Self-assembly of DNA into nanoscale three-dimensional shapes. Nature 459, 414–8 (2009).
  18. Fahrner, K., Ryu, W. S. & Berg, H. C. Bacterial flagellar switching under load. Nature 423, 938 (2003).
  19. Gennerich, A., Carter, A. P., Reck-Peterson, S. L. & Vale, R. D. Force-induced bidirectional stepping of cytoplasmic dynein. Cell 131, 952–65 (2007).
  20. Glotzer, S. C. Self-Assembly of Patchy Particles. Nano Letters 4, 1407–1413 (2004).
  21. Green, S., Bath, J. & Turberfield, a. Coordinated Chemomechanical Cycles: A Mechanism for Autonomous Molecular Motion. Physical Review Letters 101, 20–23 (2008).
  22. Grierer, A. Model for DNA and Protein Interaction and the Function of the Operator. Nature 212, 1480 (1966).
  23. Gu, H., Chao, J., Xiao, S.-J. & Seeman, N. C. A proximity-based programmable DNA nanoscale assembly line. Nature 465, 202–5 (2010).
  24. He, Y. & Liu, D. R. Autonomous multistep organic synthesis in a single isothermal solution mediated by a DNA walker. Nature nanotechnology 5, 778–82 (2010).
  25. Itoh, H. et al. Mechanically driven ATP synthesis by F 1 -ATPase. Nature 427, 465–468 (2004).
  26. Johnson, K. A. Transient state kinetic analysis of enzyme reaction pathways. The Enzymes XX, 1-61 (1992).
  27. Kallenbach, N. R., Ma, R.-I. & Seeman, N. C. An immobile nucleic acid junction constructed from oligonucleotides. Nature 305, 829 (1983).
  28. Kallenbach, N. R., Petrillol, M. L. & Laboratories, L. Three-arm nucleic acid junctions are flexible. Nucleic acids research 14, 9745–9753 (1986).
  29. Kelly, T. R. Molecular motors: synthetic DNA-based walkers inspired by kinesin. Angewandte Chemie (International ed. in English) 44, 4124–7 (2005).
  30. Kinbara, K. & Aida, T. Toward intelligent molecular machines: directed motions of biological and artificial molecules and assemblies. Chemical reviews 105, 1377–400 (2005).
  31. Li, B., Ellington, A. D. & Chen, X. Rational, modular adaptation of enzyme-free DNA circuits to multiple detection methods. Nucleic acids research 39, e110 (2011).
  32. Liu, C., Jonoska, N. & Seeman, N. C. Reciprocal DNA nanomechanical devices controlled by the same set strands. Nano letters 9, 2641–7 (2009).
  33. Liu, H., Chen, Y., He, Y., Ribbe, A. E. & Mao, C. Approaching The Limit: Can One DNA Oligonucleotide Assemble into Large Nanostructures? Angewandte Chemie 118, 1976–1979 (2006).
  34. Lu, Y. & Liu, J. Functional DNA nanotechnology: emerging applications of DNAzymes and aptamers. Current opinion in biotechnology 17, 580–8 (2006).
  35. Lund, K. et al. Molecular robots guided by prescriptive landscapes. Nature 465, 206–10 (2010).
  36. Macfarlane, R. J. et al. Nanoparticle superlattice engineering with DNA. Science (New York, N.Y.) 334, 204–8 (2011).
  37. Mao, C., Sun, W., Shen, Z. & Seeman, N. C. A nanomechanical device based on the B-Z transition of DNA. Nature 397, 144–6 (1999).
  38. McNaughton, B. R., Cronican, J. J., Thompson, D. B. & Liu, D. R. Mammalian cell penetration, siRNA transfection, and DNA transfection by supercharged proteins. Proceedings of the National Academy of Sciences of the United States of America 106, 6111–6 (2009).
  39. Mehta, a D. et al. Myosin-V is a processive actin-based motor. Nature 400, 590–3 (1999).
  40. Mermall, V., Post, P. L. & Mooseker, M. S. Unconventional Myosins in Cell Movement, Memrane Traffic, and Signal Transduction. Science 279, 527 (1998).
  41. Mirkin, C. A. Programming the Assembly of Two- and Three-Dimensional Architectures with DNA and Nanoscale Inorganic Building Blocks. Inorg. Chem. 39, 2258–2272 (2000).
  42. Noji, H., Yasuda, R., Yoshida, M. & Kinosita, K. J. Direct observation of the rotation of F1-ATPase. Nature 386, 299 (1997).
  43. Omabegho, T., Sha, R. & Seeman, N. C. A bipedal DNA Brownian motor with coordinated legs. Science (New York, N.Y.) 324, 67–71 (2009).
  44. Pei, R. et al. Behavior of Polycatalytic Assemblies in a Substrate-Displaying Matrix Nanoassembly Incorporating Catalytic Kinesis because they couple diffusion ( movement ) to a catalytic process . For example ,. Journal of the American Chemical Society 128, 12693–12699 (2006).
  45. Peng, X. et al. A nonfluorescent, broad-range quencher dye for Förster resonance energy transfer assays. Analytical biochemistry 388, 220–8 (2009).
  46. Rothemund, P. W. K. Folding DNA to create nanoscale shapes and patterns. Nature 440, 297–302 (2006).
  47. Seeman, N. C. The use of branched DNA for nanoscale fabrication. Nanotechnology 149 (1991).
  48. Seeman, N. C. DNA engineering and its application to nanotechnology. Trends in Biotechnology 7799, 437–443 (1999).
  49. Seeman, N. C. & Kallenbach, N. R. Design of immobile nucleic acid junctions. Biophysics 44, 201–209 (1983).
  50. Sherman, W. B. & Seeman, N. C. A Precisely Controlled DNA Biped Walking Device. Nano Letters 4, 1203–1207 (2004).
  51. Shin, J.-S. & Pierce, N. a A synthetic DNA walker for molecular transport. Journal of the American Chemical Society 126, 10834–5 (2004).
  52. Sowa, Y. et al. Direct observation of steps in rotation of the bacterial flagellar motor. Nature 437, 916–9 (2005).
  53. Tian, Y., He, Y., Chen, Y., Yin, P. & Mao, C. A DNAzyme that walks processively and autonomously along a one-dimensional track. Angewandte Chemie (International ed. in English) 44, 4355–8 (2005).
  54. Vale, R. D. The molecular motor toolbox for intracellular transport. Cell 112, 467–80 (2003).
  55. Vale, R. D., Funatsu, T., Pierce, D. W. & Romberg, L. Direct observation of single kinesin molecules moving along microtubules. Nature 380, 451–453 (1996).
  56. Venkataraman, S., Dirks, R. M., Rothemund, P. W. K., Winfree, E. & Pierce, N. a An autonomous polymerization motor powered by DNA hybridization. Nature nanotechnology 2, 490–4 (2007).
  57. Wang H, Oster G. 1998. Energy transduction in the F1 motor of ATP synthase. Nature 396:279–82
  58. Wei, B., Dai, M. & Yin, P. Complex shapes self-assembled from single-stranded DNA tiles. Nature 485, 623–6 (2012).
  59. Wendt, T. G. et al. Microscopic evidence for a minus-end-directed power stroke in the kinesin motor ncd. The EMBO journal 21, 5969–78 (2002).
  60. Woo, S. & Rothemund, P. W. K. Programmable molecular recognition based on the geometry of DNA nanostructures. Nature chemistry 3, 620–7 (2011).
  61. Yildiz, A., Tomishige, M., Vale, R. D. & Selvin, P. R. Kinesin walks hand-over-hand. Science (New York, N.Y.) 303, 676–8 (2004).
  62. Yin, P., Choi, H. M. T., Calvert, C. R. & Pierce, N. a Programming biomolecular self-assembly pathways. Nature 451, 318–22 (2008).
  63. Yurke, B., Turber, A. J., Jr, A. P. M., Simmel, F. C. & Neumann, J. L. A DNA-fuelled molecular machine made of DNA. Nature 406, 605–608 (2000).
  64. Zhang, D. Y., Turberfield, A. J., Yurke, B. & Winfree, E. Engineering entropy-driven reactions and networks catalyzed by DNA. Science (New York, N.Y.) 318, 1121–5 (2007).
  65. Zhang, D. Y. & Winfree, E. Control of DNA strand displacement kinetics using toehold exchange. Journal of the American Chemical Society 131, 17303–14 (2009).
  66. Zhang, D. Y. & Winfree, E. Robustness and modularity properties of a non-covalent DNA catalytic reaction. Nucleic acids research 38, 4182–97 (2010).
  67. Zheng, J. et al. From Molecular to Macroscopic via the Rational Design of a Self-Assembled 3D DNA Crystal. Nature 461, 74–77 (2009).
Personal tools