Biomod/2012/UT/Nanowranglers/References

From OpenWetWare

(Difference between revisions)
Jump to: navigation, search
(Please fill out references)
(Please fill out references)
Line 8: Line 8:
#Ding, B., Deng, Z., Yan, H., Cabrini, S., Zuckermann, R. N., & Bokor, J. (2010). Gold nanoparticle self-similar chain structure organized by DNA origami. Journal of the American Chemical Society, 132(10), 3248–9. doi:10.1021/ja9101198
#Ding, B., Deng, Z., Yan, H., Cabrini, S., Zuckermann, R. N., & Bokor, J. (2010). Gold nanoparticle self-similar chain structure organized by DNA origami. Journal of the American Chemical Society, 132(10), 3248–9. doi:10.1021/ja9101198
#Douglas, S. M., Bachelet, I., & Church, G. M. (2012a). A logic-gated nanorobot for targeted transport of molecular payloads. Science (New York, N.Y.), 335(6070), 831–4. doi:10.1126/science.1214081
#Douglas, S. M., Bachelet, I., & Church, G. M. (2012a). A logic-gated nanorobot for targeted transport of molecular payloads. Science (New York, N.Y.), 335(6070), 831–4. doi:10.1126/science.1214081
-
#Douglas, S. M., Bachelet, I., & Church, G. M. (2012b). A logic-gated nanorobot for targeted transport of molecular payloads. Science (New York, N.Y.), 335(6070), 831–4. doi:10.1126/science.1214081
 
#Glotzer, S. C. (2004). Self-Assembly of Patchy Particles. Nano Letters, 4(8), 1407–1413. doi:10.1021/nl0493500
#Glotzer, S. C. (2004). Self-Assembly of Patchy Particles. Nano Letters, 4(8), 1407–1413. doi:10.1021/nl0493500
#He, Y., & Liu, D. R. (2010). Autonomous multistep organic synthesis in a single isothermal solution mediated by a DNA walker. Nature nanotechnology, 5(11), 778–82. doi:10.1038/nnano.2010.190
#He, Y., & Liu, D. R. (2010). Autonomous multistep organic synthesis in a single isothermal solution mediated by a DNA walker. Nature nanotechnology, 5(11), 778–82. doi:10.1038/nnano.2010.190
#Li, B., Ellington, A. D., & Chen, X. (2011). Rational, modular adaptation of enzyme-free DNA circuits to multiple detection methods. Nucleic acids research, 39(16), e110. doi:10.1093/nar/gkr504
#Li, B., Ellington, A. D., & Chen, X. (2011). Rational, modular adaptation of enzyme-free DNA circuits to multiple detection methods. Nucleic acids research, 39(16), e110. doi:10.1093/nar/gkr504
 +
#Liu, C., Jonoska, N., & Seeman, N. C. (2009). Reciprocal DNA nanomechanical devices controlled by the same set strands. Nano Lett, 9(7), 2641–47. doi: 10.1021/nl901008k
#Liu, H., Chen, Y., He, Y., Ribbe, A. E., & Mao, C. (2006a). Approaching The Limit: Can One DNA Oligonucleotide Assemble into Large Nanostructures? Angewandte Chemie, 118(12), 1976–1979. doi:10.1002/ange.200504022
#Liu, H., Chen, Y., He, Y., Ribbe, A. E., & Mao, C. (2006a). Approaching The Limit: Can One DNA Oligonucleotide Assemble into Large Nanostructures? Angewandte Chemie, 118(12), 1976–1979. doi:10.1002/ange.200504022
#Liu, H., Chen, Y., He, Y., Ribbe, A. E., & Mao, C. (2006b). Approaching the limit: can one DNA oligonucleotide assemble into large nanostructures? Angewandte Chemie (International ed. in English), 45(12), 1942–5. doi:10.1002/anie.200504022
#Liu, H., Chen, Y., He, Y., Ribbe, A. E., & Mao, C. (2006b). Approaching the limit: can one DNA oligonucleotide assemble into large nanostructures? Angewandte Chemie (International ed. in English), 45(12), 1942–5. doi:10.1002/anie.200504022
Line 17: Line 17:
#Lund, K., Manzo, A. J., Dabby, N., Michelotti, N., Johnson-Buck, A., Nangreave, J., Taylor, S., et al. (2010). Molecular robots guided by prescriptive landscapes. Nature, 465(7295), 206–10. doi:10.1038/nature09012
#Lund, K., Manzo, A. J., Dabby, N., Michelotti, N., Johnson-Buck, A., Nangreave, J., Taylor, S., et al. (2010). Molecular robots guided by prescriptive landscapes. Nature, 465(7295), 206–10. doi:10.1038/nature09012
#Macfarlane, R. J., Lee, B., Jones, M. R., Harris, N., Schatz, G. C., & Mirkin, C. a. (2011a). Nanoparticle superlattice engineering with DNA. Science (New York, N.Y.), 334(6053), 204–8. doi:10.1126/science.1210493
#Macfarlane, R. J., Lee, B., Jones, M. R., Harris, N., Schatz, G. C., & Mirkin, C. a. (2011a). Nanoparticle superlattice engineering with DNA. Science (New York, N.Y.), 334(6053), 204–8. doi:10.1126/science.1210493
-
#Macfarlane, R. J., Lee, B., Jones, M. R., Harris, N., Schatz, G. C., & Mirkin, C. a. (2011b). Nanoparticle superlattice engineering with DNA. Science (New York, N.Y.), 334(6053), 204–8. doi:10.1126/science.1210493
 
#Mao, C., Sun, W., Shen, Z., & Seeman, N. C. (1999). A nanomechanical device based on the B-Z transition of DNA. Nature, 397(6715), 144–6. doi:10.1038/16437
#Mao, C., Sun, W., Shen, Z., & Seeman, N. C. (1999). A nanomechanical device based on the B-Z transition of DNA. Nature, 397(6715), 144–6. doi:10.1038/16437
#McNaughton, B. R., Cronican, J. J., Thompson, D. B., & Liu, D. R. (2009). Mammalian cell penetration, siRNA transfection, and DNA transfection by supercharged proteins. Proceedings of the National Academy of Sciences of the United States of America, 106(15), 6111–6. doi:10.1073/pnas.0807883106
#McNaughton, B. R., Cronican, J. J., Thompson, D. B., & Liu, D. R. (2009). Mammalian cell penetration, siRNA transfection, and DNA transfection by supercharged proteins. Proceedings of the National Academy of Sciences of the United States of America, 106(15), 6111–6. doi:10.1073/pnas.0807883106
-
#Mirkin, C. A. (2000). from Recipient of ACS Award in Pure, 2258–2272.
+
#Mirkin, C. A. (2000). from Recipient of ACS Award in Pure, 2258–2272
#Omabegho, T., Sha, R., & Seeman, N. C. (2009). A bipedal DNA Brownian motor with coordinated legs. Science (New York, N.Y.), 324(5923), 67–71. doi:10.1126/science.1170336
#Omabegho, T., Sha, R., & Seeman, N. C. (2009). A bipedal DNA Brownian motor with coordinated legs. Science (New York, N.Y.), 324(5923), 67–71. doi:10.1126/science.1170336
#Peng, X., Chen, H., Draney, D. R., Volcheck, W., Schutz-Geschwender, A., & Olive, D. M. (2009). A nonfluorescent, broad-range quencher dye for Förster resonance energy transfer assays. Analytical biochemistry, 388(2), 220–8. doi:10.1016/j.ab.2009.02.024
#Peng, X., Chen, H., Draney, D. R., Volcheck, W., Schutz-Geschwender, A., & Olive, D. M. (2009). A nonfluorescent, broad-range quencher dye for Förster resonance energy transfer assays. Analytical biochemistry, 388(2), 220–8. doi:10.1016/j.ab.2009.02.024

Revision as of 01:21, 22 October 2012


Undergraduate DNA nanotechnology research group from the University of Texas at Austin



Please fill out references

  1. Barish, R. D., Rothemund, P. W. K., & Winfree, E. (2005). Two computational primitives for algorithmic self-assembly: copying and counting. Nano letters, 5(12), 2586–92. doi:10.1021/nl052038l
  2. Brun, Y. (2008). Solving NP-complete problems in the tile assembly model. Theoretical Computer Science, 395(1), 31–46. doi:10.1016/j.tcs.2007.07.052
  3. Chen, X., & Ellington, A. D. (2010). Shaping up nucleic acid computation. Current opinion in biotechnology, 21(4), 392–400. doi:10.1016/j.copbio.2010.05.003
  4. Dietz, H., Douglas, S. M., & Shih, W. M. (2009). Folding DNA into Twisted and Curved Nanoscale Shapes. Science, 325(5941), 725.
  5. Ding, B., Deng, Z., Yan, H., Cabrini, S., Zuckermann, R. N., & Bokor, J. (2010). Gold nanoparticle self-similar chain structure organized by DNA origami. Journal of the American Chemical Society, 132(10), 3248–9. doi:10.1021/ja9101198
  6. Douglas, S. M., Bachelet, I., & Church, G. M. (2012a). A logic-gated nanorobot for targeted transport of molecular payloads. Science (New York, N.Y.), 335(6070), 831–4. doi:10.1126/science.1214081
  7. Glotzer, S. C. (2004). Self-Assembly of Patchy Particles. Nano Letters, 4(8), 1407–1413. doi:10.1021/nl0493500
  8. He, Y., & Liu, D. R. (2010). Autonomous multistep organic synthesis in a single isothermal solution mediated by a DNA walker. Nature nanotechnology, 5(11), 778–82. doi:10.1038/nnano.2010.190
  9. Li, B., Ellington, A. D., & Chen, X. (2011). Rational, modular adaptation of enzyme-free DNA circuits to multiple detection methods. Nucleic acids research, 39(16), e110. doi:10.1093/nar/gkr504
  10. Liu, C., Jonoska, N., & Seeman, N. C. (2009). Reciprocal DNA nanomechanical devices controlled by the same set strands. Nano Lett, 9(7), 2641–47. doi: 10.1021/nl901008k
  11. Liu, H., Chen, Y., He, Y., Ribbe, A. E., & Mao, C. (2006a). Approaching The Limit: Can One DNA Oligonucleotide Assemble into Large Nanostructures? Angewandte Chemie, 118(12), 1976–1979. doi:10.1002/ange.200504022
  12. Liu, H., Chen, Y., He, Y., Ribbe, A. E., & Mao, C. (2006b). Approaching the limit: can one DNA oligonucleotide assemble into large nanostructures? Angewandte Chemie (International ed. in English), 45(12), 1942–5. doi:10.1002/anie.200504022
  13. Lu, Y., & Liu, J. (2006). Functional DNA nanotechnology: emerging applications of DNAzymes and aptamers. Current opinion in biotechnology, 17(6), 580–8. doi:10.1016/j.copbio.2006.10.004
  14. Lund, K., Manzo, A. J., Dabby, N., Michelotti, N., Johnson-Buck, A., Nangreave, J., Taylor, S., et al. (2010). Molecular robots guided by prescriptive landscapes. Nature, 465(7295), 206–10. doi:10.1038/nature09012
  15. Macfarlane, R. J., Lee, B., Jones, M. R., Harris, N., Schatz, G. C., & Mirkin, C. a. (2011a). Nanoparticle superlattice engineering with DNA. Science (New York, N.Y.), 334(6053), 204–8. doi:10.1126/science.1210493
  16. Mao, C., Sun, W., Shen, Z., & Seeman, N. C. (1999). A nanomechanical device based on the B-Z transition of DNA. Nature, 397(6715), 144–6. doi:10.1038/16437
  17. McNaughton, B. R., Cronican, J. J., Thompson, D. B., & Liu, D. R. (2009). Mammalian cell penetration, siRNA transfection, and DNA transfection by supercharged proteins. Proceedings of the National Academy of Sciences of the United States of America, 106(15), 6111–6. doi:10.1073/pnas.0807883106
  18. Mirkin, C. A. (2000). from Recipient of ACS Award in Pure, 2258–2272
  19. Omabegho, T., Sha, R., & Seeman, N. C. (2009). A bipedal DNA Brownian motor with coordinated legs. Science (New York, N.Y.), 324(5923), 67–71. doi:10.1126/science.1170336
  20. Peng, X., Chen, H., Draney, D. R., Volcheck, W., Schutz-Geschwender, A., & Olive, D. M. (2009). A nonfluorescent, broad-range quencher dye for Förster resonance energy transfer assays. Analytical biochemistry, 388(2), 220–8. doi:10.1016/j.ab.2009.02.024
  21. Wendt, T. G., Volkmann, N., Skiniotis, G., Goldie, K. N., Müller, J., Mandelkow, E., & Hoenger, A. (2002). Microscopic evidence for a minus-end-directed power stroke in the kinesin motor ncd. The EMBO journal, 21(22), 5969–78. Retrieved from http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=137211&tool=pmcentrez&rendertype=abstract
  22. Woo, S., & Rothemund, P. W. K. (2011). Programmable molecular recognition based on the geometry of DNA nanostructures. Nature chemistry, 3(8), 620–7. doi:10.1038/nchem.1070
  23. Yin, P., Choi, H. M. T., Calvert, C. R., & Pierce, N. a. (2008). Programming biomolecular self-assembly pathways. Nature, 451(7176), 318–22. doi:10.1038/nature06451
  24. Yurke, B., Turber, A. J., Jr, A. P. M., Simmel, F. C., & Neumann, J. L. (2000). A DNA-fuelled molecular machine made of DNA, 406(August), 605–608.
  25. Zhang, D. Y., & Winfree, E. (2009). Control of DNA strand displacement kinetics using toehold exchange. Journal of the American Chemical Society, 131(47), 17303–14. doi:10.1021/ja906987s
Personal tools