# Biomod/2012/Titech/Nano-Jugglers/Simulation

(Difference between revisions)
 Revision as of 02:02, 28 October 2012 (view source) (→4. Rotatory Brownian changes)← Previous diff Revision as of 02:25, 28 October 2012 (view source) (→Calculation for Speed)Next diff → Line 10: Line 10: ===Calculation for Speed=== ===Calculation for Speed=== :'''Bubbles detachment helps Biomolecular Rocket go straightforward.''' :'''Bubbles detachment helps Biomolecular Rocket go straightforward.''' - :Biomolecular rocket accelerates by a single bubble detachment every Δtd seconds . + :Biomolecular Rocket is accelerated by a single bubble detachment every Δtd seconds . :Bubbles detachments occur when fixed time Δtd passed. :Bubbles detachments occur when fixed time Δtd passed. :We defined radius changes of bubbles with time as following formula. :We defined radius changes of bubbles with time as following formula.

# Simulation Models

## Physical principles for simulations

We confirm the movement of rocket on 2D plots in simulation.
We assumed that movement of biomolecular rocket is affected by following four forces and dynamics in simulation.

## 1. Driving forces from Bubble detachment

### Calculation for Speed

Bubbles detachment helps Biomolecular Rocket go straightforward.
Biomolecular Rocket is accelerated by a single bubble detachment every Δtd seconds .
Bubbles detachments occur when fixed time Δtd passed.
We defined radius changes of bubbles with time as following formula.
Δtd is defined as the time which is required bubbles to reach its detachment radius Rd.
We defined velocity vi produced by single detachment and Δtd as following formula.

## 2. Fluid resistance

Fluid resistance decreases speed of Biomolecular Rocket.
Fluid resistance depends on the velocity of Biomolecular Rocket and viscosity of solution.
Resistance is defined as
Therefore, acceleration of Biomolecular Rocket is

## 3. Translational Brownian displacement

Translational Brownian movement prevents Biomolecular Rocket from going straight forward.
This is because body of rocket is so small and smaller particles can't be controlled under Brownian Movement.
Translational displacement by Brownian movement is described as

## 4. Rotatory Brownian changes

Rotatory Brownian movement decreases the directional controllability of Biomolecular Rocket.
Movement of Biomolecular Rocket is also much influenced by Rotatory Brownian Movement
Rotatory changes by Brownian movement is described as
>back to Results 2.2. Numerical estimation of the speed of the Biomolecular Rocket
>back to Results 3.3 Directional control of Biomolecular Rocket by the photo-switchable DNA system