Biomod/2012/Titech/Nano-Jugglers/Simulation

From OpenWetWare

(Difference between revisions)
Jump to: navigation, search
(4. Rotatory Brownian changes)
(4. Rotatory Brownian changes)
Line 71: Line 71:
::[[Image:TNJconstant4.png|400px]]
::[[Image:TNJconstant4.png|400px]]
|}
|}
-
::::::::::>back to [[Biomod/2012/Titech/Nano-Jugglers/Results#2.2._Numerical_estimation_of_the_speed_of_Biomolecular_Rocket|Results 2.2. Numerical estimation of the speed of Biomolecular Rocket]]
+
::::::>back to [[Biomod/2012/Titech/Nano-Jugglers/Results#2.2._Numerical_estimation_of_the_speed_of_Biomolecular_Rocket|Results 2.2. Numerical estimation of the speed of Biomolecular Rocket]]
-
::::::::::>back to [[Biomod/2012/Titech/Nano-Jugglers/Results#3.3._Directional_control_of_Biomolecular_Rocket_by_the_photo-switchable_DNA_system|Results 3.3 Directional control of Biomolecular Rocket by the photo-switchable DNA system]]
+
::::::>back to [[Biomod/2012/Titech/Nano-Jugglers/Results#3.3._Directional_control_of_Biomolecular_Rocket_by_the_photo-switchable_DNA_system|Results 3.3 Directional control of Biomolecular Rocket by the photo-switchable DNA system]]

Revision as of 21:30, 27 October 2012


Simulation Models

Physical principles for simulations

We confirm the movement of rocket on 2D plots in simulation.
We assumed that movement of biomolecular rocket is affected by following four forces and dynamics in simulation.

1. Driving forces from Bubble detachment

Calculation for Speed

Bubbles detachment helps Biomolecular Rocket go straightforward.
Biomolecular rocket accelerates by a single bubble detachment every Δtd seconds .
Bubbles detachments occur when fixed time Δtd passed.
We defined radius changes of bubbles with time as following formula.
Δtd is defined as the time which is required bubbles to reach its detachment radius Rd.
We defined velocity vi produced by single detachment and Δtd as following formula.

Direction Determination

2. Fluid resistance

Fluid resistance decreases speed of Biomolecular Rocket.
Fluid resistance depends on the velocity of Biomolecular Rocket and viscosity of solution.
Resistance is defined as
Therefore, acceleration of Biomolecular Rocket is

3. Translational Brownian displacement

Translational Brownian movement prevents Biomolecular Rocket from going straight forward.
This is because body of rocket is so small and smaller particles can't be controlled under Brownian Movement.
Translational displacement by Brownian movement is described as

4. Rotatory Brownian changes

Rotatory Brownian movement decreases the directional controllability of Biomolecular Rocket.
Movement of Biomolecular Rocket is also much influenced by Rotatory Brownian Movement
Rotatory changes by Brownian movement is described as
>back to Results 2.2. Numerical estimation of the speed of Biomolecular Rocket
>back to Results 3.3 Directional control of Biomolecular Rocket by the photo-switchable DNA system
Personal tools