Biomod/2012/Titech/Nano-Jugglers/Methods/Dissociation of photoresponsive DNA

From OpenWetWare

(Difference between revisions)
Jump to: navigation, search
(3-2.Dissociation of photoresponsive DNA by UV-light irradiation)
(3-2.Dissociation of photoresponsive DNA by UV-light irradiation)
Line 1: Line 1:
{{Titech/Nano-Jugglers/HEAD}}
{{Titech/Nano-Jugglers/HEAD}}
-
==3-2.Dissociation of photoresponsive DNA by UV-light irradiation==
+
==3.2. Dissociation of photoresponsive DNA by UV-light irradiation==
:{|
:{|
|-
|-
Line 10: Line 10:
:&nbsp;&nbsp;&nbsp;&nbsp;We measured DNA absorbance and ascertain the duplex-forming and duplex-dissociation activities of photoswitcable DNA strands. As the ordered regions of stacked base pairs in the DNA duplex are dissociated, the UV absorbance increases. This difference in absorbance between the duplex and single strand state is the result of nearest neighbor base pair interactions. In other words, when the DNA is in the duplex state, interactions between base pairs decrease the UV absorbance relative to single strands. When the DNA is in the single strand state the interactions are much weaker,due to the decreased proximity, and the UV absorbance is higher than the duplex state. About this time, we analyze the rerationship between the time of dissociation photo-switcable DNA and the strength of the UV light. <br>
:&nbsp;&nbsp;&nbsp;&nbsp;We measured DNA absorbance and ascertain the duplex-forming and duplex-dissociation activities of photoswitcable DNA strands. As the ordered regions of stacked base pairs in the DNA duplex are dissociated, the UV absorbance increases. This difference in absorbance between the duplex and single strand state is the result of nearest neighbor base pair interactions. In other words, when the DNA is in the duplex state, interactions between base pairs decrease the UV absorbance relative to single strands. When the DNA is in the single strand state the interactions are much weaker,due to the decreased proximity, and the UV absorbance is higher than the duplex state. About this time, we analyze the rerationship between the time of dissociation photo-switcable DNA and the strength of the UV light. <br>
:[1]Xingguo Liang,Hidenori Nishioka, Nobutaka Takenaka, and Hiroyuki Asanuma,;ChemBioChem 9, 702 – 705(2008)
:[1]Xingguo Liang,Hidenori Nishioka, Nobutaka Takenaka, and Hiroyuki Asanuma,;ChemBioChem 9, 702 – 705(2008)
-
::::::::::>>back to [[Biomod/2012/Titech/Nano-Jugglers/Results#3-2.Dissociation_of_photoresponsive_DNA_by_UV-light_irradiation|Result]]
+
::::::::::>>back to [[Biomod/2012/Titech/Nano-Jugglers/Results#3.2._Dissociation_of_photoresponsive_DNA_by_UV-light_irradiation|Result]]

Revision as of 05:04, 24 October 2012


3.2. Dissociation of photoresponsive DNA by UV-light irradiation

    The duplex-forming activities of DNA can be photomodulated by incorporation of an azobenzene unit[1]. The duplex is dissociated on isomerizing the trans-azobenzene to the cis form by irradiation with UV light. The duplex is formed again when the cis-azobenzene is converted to the transazobenzene by irradiation with visible light.
    We inserted this function into a bead-body and add the photo-switching function to the body.In brief, so that we can detached the engines by irradiation with UV light, we attached a part of engines to the body with DNA duplex incorporating azobenzene unit.

    We measured DNA absorbance and ascertain the duplex-forming and duplex-dissociation activities of photoswitcable DNA strands. As the ordered regions of stacked base pairs in the DNA duplex are dissociated, the UV absorbance increases. This difference in absorbance between the duplex and single strand state is the result of nearest neighbor base pair interactions. In other words, when the DNA is in the duplex state, interactions between base pairs decrease the UV absorbance relative to single strands. When the DNA is in the single strand state the interactions are much weaker,due to the decreased proximity, and the UV absorbance is higher than the duplex state. About this time, we analyze the rerationship between the time of dissociation photo-switcable DNA and the strength of the UV light.
[1]Xingguo Liang,Hidenori Nishioka, Nobutaka Takenaka, and Hiroyuki Asanuma,;ChemBioChem 9, 702 – 705(2008)
>>back to Result
Personal tools