Biomod/2011/TeamJapan/Sendai/Notes: Difference between revisions

From OpenWetWare
Jump to navigationJump to search
No edit summary
No edit summary
 
(34 intermediate revisions by 2 users not shown)
Line 3: Line 3:
== Brainstorming ==
== Brainstorming ==


[[Image:ebbf4.png|600px|center|thumb|Figure 1.Brainstorming]]
[[Image:DSC00974.jpg|600px|center|thumb|Figure 1.Brainstorming]]


To improve the efficiency of the molecular robot we gathered many ideas related with the robot design and its mechanism for movement:
To improve the efficiency of the molecular robot we gathered many ideas related with the robot design and its mechanism for movement:


=== Hexagonal prism ===
 
=== Hexagonal prism (suspended) ===
By design the motion of this kind of robot is rolling rather than walking. This robbot was our first plan.
By design the motion of this kind of robot is rolling rather than walking. This robbot was our first plan.


''Advantage''
''Advantage''<br />
*A maximum of 72 legs can be attached to a hexagonal prismatic body.  
A maximum of 72 legs can be attached to a hexagonal prismatic body. <br />
*The robot does not go backwards. Therefore, walking forward efficiently.
The robot does not go backwards. Therefore, walking forward efficiently.<br />


''Disadvantage''
''Disadvantage''<br />
*The difficulty in verifying the 3D body design.  
The difficulty in verifying the 3D body design. <br />
*The time cost that is necessary to get the robot annealed.  
The time cost that is necessary to get the robot annealed. <br />
*The complexity of the structure due to the different variety of staples.
The complexity of the structure due to the different variety of staples.<br />


[http://openwetware.org/wiki/Biomod/2011/TeamJapan/Sendai/Notes/Hexa Here] you can find this robot sequence and more information.
[http://openwetware.org/wiki/Biomod/2011/TeamJapan/Sendai/Notes/Hexa '''Here'''] you can find this robot sequence and more information.




=== Wall runner ===
=== Wall runner (suspended) ===
Over the path we can create two walls that link the start point and goal, analogous to a simple labyrinth.
Over the path we can create two walls that link the start point and goal, analogous to a simple labyrinth.


''Advantage''
''Advantage''<br />
*This robot will always go towards one direction.  
This robot will always go towards one direction. <br />
*A novel mechanism for motion.
A novel mechanism for motion.<br />


''Disadvantage''
''Disadvantage''<br />
*This robot may fall at the time of observation by AFM.  
This robot may fall at the time of observation by AFM. <br />
*The difficulty to make a single wall.
The difficulty to make a single wall.<br />




=== Sticky motif robot ===
=== Sticky motif robot (suspended) ===
This design is a very simple one, where it is combined only four DNA double strands.<br />
This design is a very simple one, where it is combined only four DNA double strands.<br />
The sticky motif robot was our plan B in case we failed to produce the triangular prism robot. <br />
The sticky motif robot was our plan B in case we failed to produce the triangular prism robot. <br />
In addition the legs design include both kind of robots for saving time and costs.<br />
In addition the legs design include both kind of robots for saving time and costs.<br />
[http://openwetware.org/wiki/Biomod/2011/TeamJapan/Sendai/Notes/Stick Here] you can find this robot sequence and more information.
[http://openwetware.org/wiki/Biomod/2011/TeamJapan/Sendai/Notes/Stick '''Here'''] you can find this robot sequence and more information.




= ぼくたちがいままでやったこと The progress of our activity =
== 六角柱 The hexagonal prism ==
本体のみをアニーリング Annealing of robot’s body<br />
電気泳動 Electrophoresis


== 三角柱 The triangular prism ==
== Our activity progress ==
本体のみをアニーリング Annealing of robot’s body<br />
Here is stage at where our respective designs are:
電気泳動 Electrophoresis <br />
本体足つきをアニーリング Annealing of robot’s body and legs<br />
余分なM13を切る Cutting of excessive M13


== 足 Legs ==
=== The hexagonal prism ===
フィールドをアニーリング Annealing of field <br />
Annealing of robot’s body<br />
スパイダーによるフィールドと足の切断実験 Cutting of leg and substrate with spider<br />
Electrophoresis
フィールドに乗せる実験 Putting robot on field


= 実験方法 The method of experiments  =
=== The triangular prism ===
== アニーリング Annealing ==
Annealing of robot’s body<br />
Electrophoresis <br />
Annealing of robot’s body and legs<br />
Cutting of excessive M13<br />


=== Legs ===
Annealing of field <br />
Cutting of leg and substrate with spider<br />
Putting robot on field<br />


== Freeze'n squeeze ==
Our experiment refers to [http://openwetware.org/wiki/Biomod/2011/Harvard/HarvarDNAnos:Protocols Harvard team wiki].
Thank you Harvard team!!




== 足の切断実験 Cutting of leg and substrate ==
== The methods used for the experiments  ==
=== 蛍光付きのsubstrate Substrate with fluorescence ===  
=== Freeze'n squeeze ===
(spiderの論文を参照した配列に蛍光と消光をつけたsubstrateとlegが二重螺旋を組み、Zn2+入りのbufferを入れることで蛍光と消光剤が離れ結果的に蛍光が光っていることにより足が切断されていることがわかる。以下にその手順を示す。)
This experiment refers to [http://openwetware.org/wiki/Biomod/2011/Harvard/HarvarDNAnos:Protocols#Preparing.2FRunning_an_Agarose_Gel_2:Protocols Harvard team wiki]. <br />
Thank you so much Harvard team!!


Leg and substrate, which attached fluorescence and quencher, have constructed the double helix. By putting in buffer containing Zn<sup>2+</sup>, fluorescence is separated from quencher, and fluoresce. Therefore, by observing fluorescence, it can be confirmed whether legs and substrate were cut. The process is shown below.  
=== DNAzyme legs cutting substrates ===
==== Substrate with fluorescence ====
Leg and substrate [http://openwetware.org/wiki/Biomod/2011/TeamJapan/Sendai/Design#Leg_Design type A], which attached fluorescence and quencher, have constructed the double helix. By putting in buffer containing Zn<sub>2</sub><sup>+</sup>, fluorescence is separated from quencher, and fluoresce. Therefore, by observing fluorescence, it can be confirmed whether legs and substrate were cut. The process is shown below.  


[[Image:Leg cut 1kaime.JPG|320px|thumb|Figure 2. First experiment. All samples include both legs and substrates.
Buffer:1; 1×TAE Mg<sub>2</sub><sup>+</sup>. 2, 5, and 8; 1×TAE Mg<sup>2+</sup> with Zn<sub>2</sub><sup>+</sup>1mM. 3, 6 and 9; 1×TAE Mg<sub>2</sub><sup>+</sup> with Zn<sub>2</sub><sup>+</sup>2mM. 4, 7 and 10; 1×TAE Mg<sub>2</sub><sup>+</sup> with Zn<sub>2</sub><sup>+</sup>10mM.
Time after adding buffer:2, 3 and 4; 0min. 5, 6 and 7; 5min. 8, 9 and 10; 30min.
]]


(1.蛍光付きのsubstrateとlegを100nMに希釈してそれらを22μLずつ入れてbufferとして1×TA Mg2+と1×TA Mg2 with Zn2+(1mM,2mM,10mM)を入れてbufferを入れてからの時間を0min,5min,30minとし泳動用のbufferとして1×TA Mg2+を選んだ。電気泳動の結果からsubstrateのみとlegのみをsampleとして入れなかったためバンドが何を示しているかがわからず、また常温で正確に2本鎖を組んでいるかがわからないため次の泳動実験ではそのようなことを考慮した。)
1.Experiment conditions:<br />
 
Gel: 24% Poly-Acrylamide Gel<br />
[[Image:Leg cut 1kaime.JPG|320px|thumb|1回目]]
Buffer: 1×TAE Mg<sup>2+</sup><br />
 
gel:24% Poly-Acrylamide Gel
 
buffer:1×TAE Mg<sup>2+</sup>
 
sample:すべてlegとsubstrateが入っている
bufferは①1×TAE Mg<sup>2+</sup>②⑤⑧1×TAE Mg<sup>2+</sup>with Zn<sup>2+</sup>1mM③⑥⑨1×TAE Mg<sup>2+</sup>with Zn<sup>2+</sup>2mM④⑦⑩1×TAE Mg<sup>2+</sup>with Zn<sup>2+</sup>10mM
buffer入れてからの経過時間②③④0min⑤⑥⑦5min⑧⑨⑩30min
 
 
 
1.Leg and substrate with fluorescence were diluted to 100nM, and they were taken every 22 micro / L. As a buffer, 1xTA Mg<sup>2+</sup> and 1xTA Mg<sup>2+</sup> with Zn<sup>2+</sup> (1mM, 2mM, 10mM) were put in. Time after putting in buffer was set to 0min, 5min, and 30min. As a buffer for electrophoresis, 1xTA Mg<sup>2+</sup> was used. As a result of electrophoresis, it did not turn out what the bands would show, since only substrate and only leg were not put in as sample. Moreover, there is no telling whether leg and substrate have constructed double helix correctly at normal temperature. So such things were taken into consideration in the next electrophoresis.
 
 
(2.新しいsampleとしてsubstrateとlegを100nMに希釈してそれらを22μLずつ入れてから熱湯に2~3min漬けて冷水に10分ほど浸し確実に2本鎖を組ませてからbufferを入れるもの、またsampleの濃度が濃すぎたためsubstrateとlegが切れても近くにいるため
蛍光が反応しなかったかもしれないと考え濃度を1/3にしたものを新しいsampleとして加えた。電気泳動の結果からおそらくすべてのsampleにおいて切断されたと確認できるため、Zn2+入りでなくともMg2+入りのbufferが作用することでsubstrateとlegが切断されてしまうと考えられる。また熱処理を加えなくてもきちんと2本鎖を組み、濃度を薄くしなくても切断されていることが十分に確認できた。そのため原因としてはMg2+が作用していることが考えられるため、gelと泳動用のbufferでMg2+抜きのbufferを使用することでMg2+の効果を観察することを次の実験で考慮した。)
 
[[Image:Leg cut 2kaime.JPG|320px|thumb|2回目]]
 
gel:24% Poly-Acrylamide Gel
 
buffer:1×TAE Mg<sup>2+</sup>
 
sample:①only leg ②only substrate ③⑤⑦⑨1×TAE Mg<sup>2+</sup> ④⑥⑧⑩⑪1×TAE Mg<sup>2+</sup> with Zn<sup>2+</sup>1mM ③④buffer入れて0min ⑤⑥buffer入れて15min ⑦⑧熱処理をしてbuffer入れて15min ⑨⑩濃度を1/3にしてbuffer入れて15min ⑪濃度を1/3にして熱処理をしてbuffer入れて15min
 
 
2.As a new sample, sample-A and sample-B were added. Sample-A : The substrate and leg are diluted to 100nM and they are put in every 22micro / L . After dipping in boiling water for 2~3 minutes, it dips in cold water for 10 minutes. Buffer is put in after making 2 chains construct certainly. Sample-B : Concentration is set to one third. Because it thought that substrate and leg which were separated approached closely since concentration was too dense, and fluorescence can not react. As a result of electrophoresis, cutting can be checked in all the samples. Therefore, it is thought that substrate and leg will be cut by acting of Mg<sup>2+</sup> even if Zn<sup>2+</sup> is not included. Moreover, even if heat treatment did not added, the double helix was constructed exactly, and even if it does not make concentration thin, cutting has fully checked. It is considered as a cause that Mg<sup>2+</sup> is acting. In the next experiment, the effect of Mg<sup>2+</sup> was observed by using buffer which does not contain Mg<sup>2+</sup> for gel and electrophoresis.
 
 
(3.resultに記述したがMg2+が入っているbufferを用いるとsubstrateとlegが切断されていることがわかる。Zn2+の作用としては0minでの輝度差からZn2+が入っていると切断の初速度が多少早くなることがわかった。)
 
3.By putting in buffer containing Mg<sup>2+</sup>, legs and substrate were cut (refer to Results). As an action of Zn2+, it turned out from the difference of luminosity in 0min that the initial velocity of cutting becomes quick a little by using buffer containing Zn2+.


Leg and substrate with fluorescence were diluted to 100nM, and they were taken every 22 micro / L. As a buffer, 1xTA Mg<sup>2+</sup> and 1xTA Mg<sup>2+</sup> with Zn<sup>2+</sup> (1mM, 2mM, 10mM) were put in. Time after putting in buffer was set to 0min, 5min, and 30min. As a buffer for electrophoresis, 1xTA Mg<sup>2+</sup> was used. As a result of electrophoresis, it did not turn out what the bands would show, since only substrate and only leg were not put in as sample. Moreover, there is no telling whether leg and substrate have constructed double helix correctly at normal temperature. So such things were taken into consideration in the next electrophoresis.
{{-}}


=== 蛍光無しのsubstrate Substrate without fluorescence ===
[[Image:Leg cut 2kaime.JPG|320px|thumb|Figure3 .Second experiment. 1; only legs. 2; only substrates. 3, 5, 7 and 9; 1×TAE Mg<sub>2</sub><sup>+</sup>. 4, 6, 8, 10 and 11; 1×TAE Mg<sub>2</sub><sup>+</sup> with Zn<sub>2</sub><sup>+</sup> 1mM.
(蛍光ありのsubstrateでは染色液を使わなかったので、蛍光無しのsubstrateで染色をした場合切断がわかるかどうかを確認したかった。蛍光ありでの電気泳動と条件を変えずに結果が得れたので良い。)
3 and 4; 0min after adding buffer. 5 and 6; 15min after. 7 and 8; 15min after (heat-treated). 9 and 10; 15min after (1/3 concentration). 11; 15min after (heat-treated, 1/3 concentration).]]


Since a stain solution was not used in the experiment using substrate with fluorescence, in order to investigate whether it can be checked that reg and substrate have been cut even when a stain solution is used, carried out experiment using substrate without fluorescence.


2.Experiment conditions:<br />
Gel:24% Poly-Acrylamide Gel<br />
Buffer:1×TAE Mg<sup>2+</sup><br />


As a new sample, sample-A and sample-B were added. Sample-A : The substrate and leg are diluted to 100nM and they are put in every 22micro / L . After dipping in boiling water for 2~3 minutes, it dips in cold water for 10 minutes. Buffer is put in after making 2 chains construct certainly. Sample-B : Concentration is set to one third. Because it thought that substrate and leg which were separated approached closely since concentration was too dense, and fluorescence can not react. As a result of electrophoresis, cutting can be checked in all the samples. Therefore, it is thought that substrate and leg will be cut by acting of Mg<sub>2</sub><sup>+</sup> even if Zn<sub>2</sub><sup>+</sup> is not included. Moreover, even if heat treatment did not added, the double helix was constructed exactly, and even if it does not make concentration thin, cutting has fully checked. It is considered as a cause that Mg<sub>2</sub><sup>+</sup> is acting. In the next experiment, the effect of Mg<sub>2</sub><sup>+</sup> was observed by using buffer which does not contain Mg<sub>2</sub><sup>+</sup> for gel and electrophoresis.


== M13の切断 Cutting of M13 ==
To cut m13, specific part of m13 sequence form a double helix, secondly react by enzyme, finally clean up of discarded enzyme and pick out only M13.The process is shown below.<br />


3.By putting in buffer containing Mg<sub>2</sub><sup>+</sup>, legs and substrate were cut (refer to [http://openwetware.org/wiki/Biomod/2011/TeamJapan/Sendai/Results/Electrophoresis#DNAzyme_Legs_and_a_substrate_with_internal_ribonucleotide_and_fluorescence_protein_at_5.E2.80.99_end this page]). As an action of Zn2+, it turned out from the difference of luminosity in 0min that the initial velocity of cutting becomes quick a little by using buffer containing Zn<sub>2</sub><sup>+</sup>.


Japanese (M13を切断するためには特定の部分の配列を二重螺旋にしてから酵素を反応させて切断し、その後不要な酵素などを除去してM13のみを取り出す。以下にその手順を示す。)<br />
==== Substrate without fluorescence ====
Since a stain solution was not used in the experiment using substrate with fluorescence, in order to investigate whether it can be checked that reg and substrate have been cut even when a stain solution is used, carried out experiment using substrate without fluorescence.


=== '''Form a double helix''' ===
Mix 5μL M13(84nM), 3μL DNA that specific part of m13 sequence form a double helix(5μM), 2μL Buffer BSA, 2μL BalⅠ buffer, and 5μL mQ.
Set in PCR, the condition is 3min at 95°C, 3min at 65°C, for the duration of enzyme reaction, let the sample at 37°C.




Japanese (M13(84nM):5μL M13と特定の部分で相補鎖を組ませるようなDNA2種類(5μM):3μL BSA:2μL BalⅠ buffer:2μL mQ:5μL<br />
=== Method for cutting the M13 ===
これらを混ぜてサーマルサイクラーに入れる。その時の条件はを95°Cを3分、65°Cを3分、その後は酵素を働かせる間は37°Cを保つ。)<br />
To cut m13, specific part of m13 sequence form a double helix, secondly react by enzyme, finally clean up of discarded enzyme and pick out only M13. The process is shown below.<br />


==== '''Form a double helix''' ====
Mix 5μL M13(84nM), 3μL DNA that specific part of m13 sequence form a double helix(5μM), 2μL Buffer BSA, 2μL BalⅠ buffer, and 5μL mQ.<br />
Set in PCR, the condition is 3min at 95°C, 3min at 65°C, for the duration of enzyme reaction, let the sample at 37°C.<br />


=== '''Cutting M13 by enzyme reaction''' ===
==== '''Cutting M13 by enzyme reaction''' ====
Add 1μL BalⅠin the sample, let the sample stand for 2 hours at 37°C.<br />
Add 1μL BalⅠin the sample, let the sample stand for 2 hours at 37°C.<br />
Add 3μL 10×H buffer and 7μL mQ, add 1μL PstⅠ, let the sample stand for 1 hours at 37°C.<br />
Add 3μL 10×H buffer and 7μL mQ, add 1μL PstⅠ, let the sample stand for 1 hours at 37°C.<br />


==== '''Clean up of enzyme''' ====
'''The first method'''
*All centrifugation steps are carried out at 16,000×g(13,000 rpm) in a conventional tabletop micro-centrifuge at room temperature.<br />


=== '''Clean up of enzyme''' ===
Add 5 volumes of Buffer PBI to 1 volume of the cutting M13 and mix.<br />
:'''The first method'''
Place a columns in a 2ml collection tube.<br />
:*All centrifugation steps are carried out at 16,000×g(13,000 rpm) in a conventional tabletop micro-centrifuge at room temperature.
To bind DNA, apply the sample to the columns and centrifuge for 1min.<br />
 
Discard flow-through.Place the columns back into the same tube.<br />
:Add 5 volumes of Buffer PBI to 1 volume of the cutting M13 and mix.<br />
To wash, add 0.75ml Buffer PE to the columns and centrifuge for 1min.<br />
:Place a column in a 2ml collection tube.<br />
Discard flow-through and place the columns back in the same tube. Centrifuge the columns for additional 1 min.<br />
:To bind DNA, apply the sample to the column and centrifuge for 1min.<br />
Place columns in a clean 1.5ml micro-centrifuge tube.<br />
:Discard flow-through.Place the column back into the same tube.<br />
To elute DNA, add 25 μL Buffer EB (10mM Tris-Cl, pH8.5) to the center of the columns, let the columns stand for 1 min, and then centrifuge for 1 min.<br />
:To wash, add 0.75ml Buffer PE to the column and centrifuge for 1min.<br />
:Discard flow-through and place the column back in the same tube. Centrifuge the column for additional 1 min.<br />
:Place column in a clean 1.5ml micro-centrifuge tube.<br />
:To elute DNA, add 25 μL Buffer EB (10mM Tris-Cl, pH8.5) to the center of the column, let the column stand for 1 min, and then centrifuge for 1 min.<br />
 
:The first method is to make sure of cut M13, so this method is mixing long cut M13 and short(we want) cut M13.
 
 
:'''The second method'''<br />
 
:*All centrifugation steps are carried out at 16,000×g(13,000 rpm) in a conventional tabletop micro-centrifuge at room temperature.


:Add 1/10 volumes of Sodium Acetate, and 2.5 volumes of ethanol to 1 volume of the cutting M13 and mix, and then centrifuge for 10 min.
The first method is to make sure of cut M13, so this method is mixing long cut M13 and short(we want) cut M13.<br />
:Discard supernatant being careful not to throw out DNA pellet.
:Dissolve pellet in 1×TE buffer.
:After electrophoresis, Excise the DNA fragment from the agarose gel with a clean, sharp scalpel.
:Excise the DNA fragment from the agarose gel with a clean, sharp scalpel.
:Weight the gel slice in a colorless tube. Add 3 volumes of Buffer QG to 1 volume of gel.
:Incubate at 50°C for 10 min. To help dissolve gel, mix by vortexing the tube every 3 min during the incubation.
:After the gel slice has dissolve completely, add 1 gel volumes of isopropanol to the sample and mix.
:Place a column in a provided 2ml collection tube.
:To bind DNA, apply the sample to the column, and centrifuge for 1 min.
:Discard flow-though and place column back in the same collection tube.
:Add 0.5ml of Buffer QG to column and centrifuge for 1 min.
:To wash, add 0.75 ml of Buffer PE to column and centrifuge for 1 min.
:Discard the flow-though and centrifuge the column for an additional 1 min.
:Place column into a clean 1.5 ml micro-centrifuge tube.
:To elute DNA, add 25 μL Buffer EB (10mM Tris-Cl, pH8.5) to the center of the column, let the column stand for 1 min, and then centrifuge for 1 min.


:The second method can purify only short(we want) M13.


== PEG(polyethylene glycol)precipitation ==
'''The second method'''<br />


We carried out PEG precipitation to get rid of the over staples from sample.[[Image:peg 2011-10-25.jpg|right|thumb|330px|PEG precipitation]]
*All centrifugation steps are carried out at 16,000×g(13,000 rpm) in a conventional tabletop micro-centrifuge at room temperature.<br />


experimental condition
Add 1/10 volumes of Sodium Acetate, and 2.5 volumes of ethanol to 1 volume of the cutting M13 and mix, and then centrifuge for 10 min.<br />
*10mM MgCl<sub>2</sub>,PEG6000 10%, to a sample.
Discard supernatant being careful not to throw out DNA pellet.<br />
*At 16,000×g in a conventional tabletop microcentrifuge for 10 minute at RT.
Dissolve pellet in 1×TE buffer.<br />
*Removed Supernatant liquid and a sample is dissolved by 1×TAE-Mg<sup>2+</sup> of 80% of a total amount.  
After electrophoresis, excise the DNA fragment from the agarose gel with a clean, sharp scalpel.
Excise the DNA fragment from the agarose gel with a clean, sharp scalpel.<br />
Weight the gel slice in a colorless tube. Add 3 volumes of Buffer QG to 1 volume of gel.<br />
Incubate at 50°C for 10 min. To help dissolve gel, mix by vortexing the tube every 3 min during the incubation.<br />
After the gel slice has dissolve completely, add 1 gel volumes of isopropanol to the sample and mix.<br />
Place a columns in a provided 2ml collection tube.<br />
To bind DNA, apply the sample to the columns, and centrifuge for 1 min.<br />
Discard flow-though and place columns back in the same collection tube.<br />
Add 0.5ml of Buffer QG to columns and centrifuge for 1 min.<br />
To wash, add 0.75 ml of Buffer PE to columns and centrifuge for 1 min.<br />
Discard the flow-though and centrifuge the columns for an additional 1 min.<br />
Place columns into a clean 1.5 ml micro-centrifuge tube.<br />
To elute DNA, add 25 μL Buffer EB (10mM Tris-Cl, pH8.5) to the center of the columns, let the columns stand for 1 min, and then centrifuge for 1 min.<br />


The second method can purify only short(we want) M13.<br />


It seems that most staples are removed by two PEG precipitation.


二回PEG沈をすると、ステイプルはほとんど除去できるようである。
{{-}}


==  molecular spider's additional experiment スパイダー追試実験 ==
==  Molecular spider's experiment as practice==
For practice to observe by AFM, we carried out experiment about molecular spider.
For practice to observe by AFM, we carried out experiment about molecular spider.
AFM観察の練習のために、spiderの作成と観察を試みた。
*The creating method of STV:C-Leg=1:4
*STV:C-Leg=1:4の作成法
STV 5mg/ml in K<sub>2</sub>HPO<sub>4</sub>:KH<sub>2</sub>PO<sub>4</sub>=5:11    pH6.5 2.1μl<br />
STV 5mg/ml in K<sub>2</sub>HPO<sub>4</sub>:KH<sub>2</sub>PO<sub>4</sub>=5:11    pH6.5  2.1μl<br />
Capture-Leg 16nM 8μl<br />
Capture-Leg 16nM 8μl<br />
Mg<sup>2+</sup> 1M 0.6μ<br />
Mg<sup>2+</sup> 1M 0.6μ<br />
Tris:Tris-HCl=2.5:7.4 pH7.4  1μ<br />
Tris:Tris-HCl=2.5:7.4 pH7.4  1μ<br />  
MQ 38.3μl<br />
MQ 38.3μl<br />
In this case,all is 50μl.<br />
In this case,all is 50μl.<br />
<br />
 
We failed to observe the molecular spider on DNA origami field.
We guess that our failure was resulted from that our spider was not purified through HPLC.
{{-}}
{{-}}


= DNA sequence =
== The triangular prism sequence ==
[[Image:tri staple.jpg|460px|thumb|Figure: triangular prism sequence of staples. <br />red for leg, green for prism, purple for capture-leg]]
ACTCACATTAATTGCGCCTGTCGTGCCAGCTGGGTGGTTTT<br />
AGCCTGGGGTGAACGCGCGGGG<br />
GCCGGAAGCATAAAGTGAAATTGTTATCCGCTTAGCTGTT<br />
ATTACCGCCAGCCATTAAACGCTCATGGAAATGATTATTT<br />
GTAGAAGAACTCAAACCGAGTAAAAGAGTCTGAGAATCTTG<br />
TTAGTAATACCGTTGTAGCAATAC<br />
CTTTCCAGTCGGGAAATTGCGCTCACTGCCCGTTCTTTGA<br />
ATCGGCCCCTAATGAGTGAGCTA<br />
CACAGGAAGCAACACAACATACGA<br />
TTTGACGCTAATATCCAGAACAAT<br />
AGTGAGGCCACTATCGGCCTTG<br />
CAAATTAAACATCACTTGCCTGA<br />
TCTTTTCCACCGCCTGGCCCTGATTGATGGT<br />
AGAGGCGGTTTGGTCCACGCTG<br />
TCCTGTGTGATGGCCCACTACGTGAACCGTCT<br />
ACATTGGCAAGTTTTTTGGGGTCGAGGGAGCC<br />
AGAAGTGAACGTGCTTTCCTCGTACAGGGCGC<br />
GATTTTAGGCTAAACAGGAGGCCG<br />
TGCCCTTACCAGCGAGACGGGCAATTAAAGG<br />
AGCAAGCGCGTATTGGGCGCCAGCATTAATGA<br />
CCCAAATCAGATTAATCATGGTCACACAATTC<br />
TAAAGCACTCAATCGTCTGAAATGACCTACAT<br />
CGAGCACGTATTTTTTATAATC<br />
AGCGGGAACAGGAACGGTACGCCTCCATCACG<br />
GGTTCCGAAGCCCGAGATAGGGTT<br />
GTTTGCCCCAGTGGAACAAGAG<br />
ATCAGGGCCTATTAAAGAACGTGG<br />
CCCGATTTGGGGAAAGCCGGCGAA<br />
GTACTATGGAGCGGGCGCTAGGG<br />
ACCACCACACCCGCCGGGTCACGCTGCGCGTATATAAATC<br />
AAAAGAATAATCGGCAAAATCCCTACAGCTGAT<br />
GAGTGTTGTTCCAGTTCAGGCGAAAATCCTGTGAGAGTTGC<br />
ACTCCAACGTCTTGACAGAGCAAAGGGCGAAAAACCATCA<br />
CGTGGCGAGAAAGGAATAAATCGGAACCCTAAAGGTGCCG<br />
AGAAAGCGAAAGGTTGCTTTGA<br />
CGCTGGCAAGTGTAGCCGCTTAATGCGCCGCTTGGAATCAG<br />
== Field staple's sequence ==
Substrate AGGACTTGGACACTAGGTACTTTTTCACTATAGGAAGAG
[[Image:Plan_A_stage1.jpg|450px|right|thumb|Figure. design of AFM Field]]
[[Image:field_subst_leg.jpg|360px|right|thumb|Figure. Field & substrate & leg]]
Stage1 AGGAAACCAGATAGCCGAACAAAG
Stage2 TGAGGGAGACAAAAGGGCGACATTTTTTTTACCAGA
Stage3 GAATAGAACTTTCAACAGTTTCAGTTTTCAACCGAT
Stage4 GGTTTATCCCAAAAGGAGCCTTTATTTTCGGAGTGA
Stage5 TCATGAGGAGGCTTTGAGGACTAATTTTATTGTATC
Stage6 CATCTTTGGGCAAAAGAATACACTTTTTAGACTTTT
Stage7 TAATCTTGAGGCTGGCTGACCTTCTTTTAAAACACT
Stage8 GAGTAGTATGCCCTGACGAGAAACTTTTATCAAGAG
Stage9 CCAAAAGGAATTACGAATGCAGATACATAACGTTTTACCAGAAC
Stage10 AAGTAAGCGAGGAAACGCAATAATTTTACCAG
Stage11 CGCCAAAGGGAAGGTAAATATTGAGGATTTTG
Stage12 CTAAACAAAGGAACAACTAAAGGACTCCAAAA
Stage13 AAAAGGCTAGCTTGCTTTCGAGGTGTAGCAAC
Stage14 GGCTACAGAAGTTTCCATTAAACGAACCTAAA
Stage15 ACGAAAGAACCCCCAGCGATTATATACAGACC
Stage16 AGGCGCATACAAGAACCGGATATTTTCAGTGA
Stage17 ATAAGGCTAATTGGGCTTGAGATGATACCACA
Stage18 TTCAACTAGGCATAGTAAGAGCAACACTATCA
Stage19 ACCCAAAATCTTACCGAAGCCCTTTTTAAGAA
Stage20 ATTCATTATAGAAAATTCATATGGAACGGAAT
Stage21 TAATAATTATGAATTTTCTGTATGCGGAAATT
Stage22 TAAACAGCTTTTCACGTTGAAAATATTGCGAA
Stage23 ACGTAATGCAGCATCGGAACGAGGGAATTTCT
Stage24 GAAACAAACCACTACGAAGGCACCGGTAAAAT
Stage25 AAATCAACGGACAGATGAACGGTGCCAAGCGC
Stage26 TCAACTTTGTAACAAAGCTGCTCACATTACCC
Stage27 TAACCCTCCAGTTGAGATTTAGGAGTTTAATT
Stage28 AATAGCTAGAACTGGCATGATTAAATTTTGTC
Stage29 ACAATCAAAAGGTGAATTATCACCTTCCAGAC
Stage30 GTTAGTAAATTTTGTTAAAATTCGAATTGTAA
Stage31 ACGTTAATTTGATACCGATAGTTGCCTCAGCA
Stage32 GCGAAAGACCTCATATATTTTAAATAAAAATT
Stage33 TTTAGAACGTACAACGGAGATTTGGACCAACT
Stage34 TTGAAAGATTCATTCCATATAACATACGGTGT
Stage35 CTGGAAGTAATCATTGTGAATTACAGGTAGAA
Stage36 AGATTCATGTTTACCAGACGACGATAAAAACC
Stage37 ATTACGCAAAGAGCAAGAAACAATGAAATAGC
Stage38 CTTGAGCCACCACGGAATAAGTTTGACTCCTT
Stage39 TTTTGTTATAAAGTTTTGTCGTCTGTCACCGA
Stage40 ATGACAACTATAAGCAAATATTTACATTAAAT
Stage41 CTGAGTAATTTGCGGGATCGTCACCGCCGACA
Stage42 CCTGATAATATTTCAACGCAAGGATGCAATGC
Stage43 CCAATTCTATAAGGGAACCGAACTTATCATCG
Stage44 ATTTTAAGAAATATGCAACTAAAGGTTGATTC
Stage45 AAAATAGCGGAACAACATTATTACCTTATGCG
Stage46 CCAATAATGTATGTTAGCAAACGTAAAGAAAC
Stage47 GCAAAGACATTTGGGAATTAGAGCAGTTAGCG
Stage48 TAACGATCAATCAGCTCATTTTTTAAAAACAG
Stage49 GTACCTAGTGTCCAAGTCCT GAAGATTGAACCATCGCCCACGCAGGAGTTAA
Stage50 AGGCCGCTTGTGTAGGTAAAGATTTTGCGGGA
Stage51   GAAGCCTTATTGTGTCGAAATCCGGCGCAGACTTTTTTTTTTTTTTTTTTTTGATGTCTACTTGCGTCAGGTTCTCGGC
Stage52 GGTCAATCGCGAACGAGTAGATTTTAGCTCAA
Stage53 CATGTTTTAACTGGCTCATTATACAATAAAAC
Stage54 GAACTAACTAAATCAAAAATCAGGTCTTTACC
Stage55 CATACATATAACCCACAAGAATTGAGTTAAGC
Stage56 TCACCAGTAAGGTGGCAACATATAAGAAAATA
Stage57 GGAACGCCCACAGACAGCCCTCATCAGCAAAA
Stage58 GTACCTAGTGTCCAAGTCCT ATATTCGGTAATCAGAAAAGCCCCAACCAATA
Stage59 TGAGAAAGTCGCTGAGGCTTGCAGTAACCGAT
Stage60 TCCATGTTTGACCCTGTAATACTTCAAAAGGG
Stage61 CATTAGATACTTAGCCGGAACGAGCGACCTGC
Stage62 ACGTTGGGGCTGAATATAATGCTGAGTTTGAC
Stage63 CTGACTATAAGAAAAATCTACGTTCAGTCAGG
Stage64 CAGAGAGACTTAGGTTGGGTTATACCTTTTTA
Stage65 ACCTCCGGAGCACCATTACCATTAAACGCCTG
Stage66 TAGCATTCATCAAAAATAATTCGCTATGTACC
Stage67 CCGGTTGAGGCTATCAGGTCATTGTTGAGAGA
Stage68 TCTACAAAGCCGGAGACAGTCAAATGTACCAA
Stage69 AAACATTAACATCCAATAAATCATAATAGTAG
Stage70 TAGCATTAACATTTCGCAAATGGTGGCTTAGA
Stage71 GCTTAATTGACCGGAAGCAAACTCGCTTCAAA
Stage72 GCGAACCATATAGTCAGAAGCAAAGCGGATTG
Stage73 TGTAAATGCAGAGGGTAATTGAGCGCTAATAT
Stage74 GGAAACGTTAGGTCTGAGAGACTATAACTATA
Stage75 TTCCTGTACACCAGTACAAACTACGCAAGGCC
Stage76 TCTGGAGCACTAGCATGTCAATCAGTCTGGCC
Stage77 AATATGATGAGAGGGTAGCTATTTCCTGAGAG
Stage78 GGCAAAGAATAAAGCTAAATCGGTTCACCATC
Stage79 TGTTTAGCTGGCATCAATTCTACTACAGGCAA
Stage80 CAGGATTAGGTCATTTTTGCGGATCAATAACC
Stage81 CATCAAAATCGCGTTTTAATTCGACAACAGGT
Stage82 AACAAAGTCTGATGCAAATCCAATGAATTTAT
Stage83 GTACCTAGTGTCCAAGTCCT CAAAATCACACCAATGAAACCATCTAACACTG
Stage84 GTACCTAGTGTCCAAGTCCT AGTTTCGTGCCAGCTTTCATCAACGAACGGTA
Stage85 ATCGTAAAAAACAAGAGAATCGATTGATAAAT
Stage86 TAATGCCGATTCAACCGTTCTAGCAATAAAGC
Stage87 CTCAGAGCATTAGCAAAATTAAGCGCGCGAGC
Stage88 TGAAAAGGTATATTTTCATTTGGGGCTCCTTT
Stage89 TGATAAGAGAGAGTACCTTTAATTCGAAAGAC
Stage90 TTCAAATAAGATTAAGAGGAAGCC
Stage91 AAAGAACGCGGGAGAATTAACTGAACACCCTG
Stage92 CACCGTAAGAGAAGAGTCAATAGTCGCAAGAC
Stage93 ATTAAATGTGAGCGAGAGGAACCCATGTACCGGATAGCAG
Stage94 GCATTAGACGAGAAAACTTTTTCACTTAGATT
Stage95 AAGACGCTTCAGTAGCGACAGAATGGATAGCA
Stage96 AGCCCAATTAACAACCCGTCGGATTCTCCGTG
Stage97 TTAGTTAAAGAATAACATAAAAACAGGGAAGC
Stage98 CCTTTAGCGAAAACATAGCGATAGAATATATT
Stage99 GGAACAAACCACCCTCATTTTCAGCAAGTTTG
Stage10 TTACAGAGTTTCATCTTCTGACCTTTCCCTTA
Stage101 GAATCCTTGTCAGACTGTAGCGCGGCCACCCT
Stage102 CAGAGCCACGGCGGATTGACCGTAATGGGATA
Stage103 GTACCTAGTGTCCAAGTCCT TGGTTTGACGTCAAAAATGAAAATAGCAGCCT
Stage104 GTACCTAGTGTCCAAGTCCT GGCATTTTTCGCTATTAATTAATTAAATTTAA
Stage105 GGTCACGTCGCCACCCTCAGAACCTTTTCATC
Stage106 TTGTTTAAAATACCGACCGTGTGATTGCTTCT
Stage107 GTAAATCGCGGTCATAGCCCCCTTCCGCCACC
Stage108 CTCAGAACTGGTGTAGATGGGCGCATCGTAAC
Stage109 GCGTTAAACCAATCCAAATAAGAAACGATTTT
Stage110 TTGCCATCATGTGAGTGAATAACCTAAATAAG
Stage111 CGTGCATCCTCAGGAGGTTTAGTAATTAGCGT
Stage112 TATTTATCTAAGAATAAACACCGGGTACATAA
Stage113 ATCAATATTTTTCATAATCAAAATTAGGTGTA
Stage114 TCACCGTATGCCAGTTTGAGGGGACGACGACA
Stage115 TTACTAGACAGTTACAAAATAAACAGCCATAT
Stage116 CCAGAGCCTTTTTTAATGGAAACAAATCATAA
Stage117 GTATCGGCTAAGTATAGCCCGGAACACCGGAA
Stage118 TAATTTGCAAAAGCCTGTTTAGTATTTCATTT
Stage119 GTACCTAGTGTCCAAGTCCT GAATTACCACCACCGGAACCGCCTGTCGAGAG
Stage120 GTACCTAGTGTCCAAGTCCT GGTTGATACTCAGGAAGATCGCACTCCAGCCA
Stage121 GTTATACAGCTAACGAGCGTCTTTCCAGAGCC
Stage122 GCCGCCACTAATTACATTTAACAATCATATGC
Stage123 GCTTTCCGCAGGCGGATAAGTGCCCCCTCAGA
Stage124 TTACCAACAATTCTTACCAGTATAATCAAGAA
Stage125 AACAAAATCCTCAGAACCGCCACCGGGTTTTG
Stage126 CTCAGTACGCACCGCTTCTGGTGCCGGAAACC
Stage127 GCTCAACACCAGCTACAATTTTATCCTGAATC
Stage128 CACCACCCAGATGATGAAACAAACAAGCCAAC
Stage129 AGGCAAAGAGGATTAGGATTAGCGCTCAGAGC
Stage130 TTTTGCACGTAGGGCTTAATTGAGTTACCTGA
Stage131 GCAAAAGATCAGAGCCGCCACCAGGAGACTCC
Stage132 TCAAGAGACGCCATTCGCCATTCAGGCTGCGC
Stage133 GTACCTAGTGTCCAAGTCCT TATTTAACGCCTTAAATCAAGATTAGTTGCTA
Stage134 GTACCTAGTGTCCAAGTCCT CCAGAGCCGAATTATTCATTTCAAAATCGCCA
Stage135 AACTGTTGAAAGTATTAAGAGGCTAACCACCA
Stage136 GTTTTGAAAACGCCAACATGTAATAAAATCGC
Stage137 GCAGAGGCGCCGCCAGCATTGACAATTATTCT
Stage138 GAAACATGGGAAGGGCGATCGGTGCGGGCCTC
Stage139 AGGCATTTAGCGAACCTCCCGACTTGCGGGAG
Stage140 AGGCAGGTTTGAATACCAAGTTACTTAGGCAG
Stage141 TTCGCTATGCCTATTTCGGAACCTGGAGGTTG
Stage142 GGCGTTTTTCGAGCCAGTAATAAGGATTCGCC
Stage143 TGATTGCTCAGACGATTGGCCTTGACAGTTAA
Stage144 TGCCCCCTTACGCCAGCTGGCGAAAGGGGGAT
Stage145 AAGTACCGTTATCCGGTATTCTAAGAACGCGA
Stage146 AAACAAATGGGAGAAACAATAACGAGAATATA
Stage147 GTGCTGCAAACAGTGCCCGTATAAATATTCAC
Stage148 TAGAAGGCACAAAAGGTAAAGTAACAGTACCT
Stage149 GTACCTAGTGTCCAAGTCCT TTTACATCAAATCCTCATTAAAGCGGTCAGTG
Stage150 GTACCTAGTGTCCAAGTCCT CCTTGAGTAGGCGATTAAGTTGGG
Stage151 AGACGACGGCCCAATAGCAAGCAAATCAGATA
Stage152 AAAGCGCAGATGAATATACAGTAATTCTGTCC
Stage153 GGGTTTTCTAATAAGTTTTAACGGCAGAATGG
Stage154 ATACGAGCTATCCGCTCACAATTCTAACGCCA
Stage155 GGAAACCTCGCTCACTGCCCGCTTCACACAAC
Stage156 ACGCTGGTTGAGAGAGTTGCAGCATCCAGTCG
Stage157 TGAGTGTTCAAAAGAATAGCCCGAAGCGGTCC
Stage158 CCCTAAAGGTGCCGTAAAGCACTAGATAGGGT
Stage159 GCTAGGGCGCTGGCAAAGCGAAAGGAGCGGGCAATCGGAA
Stage160 ATTACCGCACAATAAACAACATGTTTCAGGTT
Stage161 TAACGTCAGTCTCTGAATTTACCGTACAGGAG
Stage162 TGTACTGGCCAGTCACGACGTTGTTCCTGTGT
Stage163 GAAATTGTCGGAAGCATAAAGTGTCACATTAA
Stage164 TTGCGTTGGTCGTGCCAGCTGCATCTTCACCG
Stage165 CCTGGCCCTTGCCCCAGCAGGCGAAAAATCCC
Stage166 TTATAAATGTTCCAGTTTGGAACAGTTTTTTG
Stage167 GGGTCGAGGGAGCCCCCGATTTAGGAAAGGAA
Stage168 GGGAAGAAGTGTAGCGGTCACGCTGCGCGTAA
Stage169 TGCAGAACGTTTTTATTTTCATCGTAGGAATC
Stage170 AGCGTCATAGAAATTGCGTAGATTTCAGCTAA
Stage171 GGCCAGTGACATGGCTTTTGATGATTCCAGTA
Stage172 GTACCTAGTGTCCAAGTCCT GGGTGCCTCATGGTCATAGCTGTTAAAACGAC
Stage173 CGGCCAACAATGAGTGAGCTAACTAAAGCCTG
Stage174 TTTGATGGGCAACAGCTGATTGCCTAATGAAT
Stage175 CTATTAAATGGTTCCGAAATCGGCAAATCCTG
Stage176 GGGGAAAGCCATCACCCAAATCAAAGAGTCCA
Stage177 CCACCACACCGGCGAACGTGGCGAAGCTTGAC
Stage178 AGCAAGCCGCGCCTGTTTATCAACCGTAAAAC
Stage179 AGAAATAAACAAAGAAACCACCAGATTATCAT
Stage180 TTTGCGGACCAAGCTTGCATGCCTAGCTCGAA
Stage181 GTACCTAGTGTCCAAGTCCT TTCGTAATACCTTGCTGAACCTCAAAAAATCT
Stage182 AAAGCATCGCGCGGGGAGAGGCGGTTCACCAG
Stage183 TGAGACGGCAGTAATAAAAGGGACTCACCAGT
Stage184 CACACGACGAACGTGGACTCCAACTGGCCCAC
Stage185 TACGTGAATTATAATCAGTGAGGCATCCTGAG
Stage186 AAGTGTTTCCCGCCGCGCTTAATGCGCCGCTA
Stage187 AGTCCTGACAAGTACCGCACTCATCGAGAACA
Stage188 GAATTATCATCAAAATTATTTGCAAATAGATA
Stage189 ACTCTAGATAAAAGTTTGAGTAACAAGGAGCG
Stage190 ACCCTCAAGGATCCCCGGGTACCGGCAGGTCG
Stage191 TTGGGCGCGAGCCAGCAGCAAATGAATATCAA
Stage192 CAACAGAGCAGGGTGGTTTTTCTTTTTGCGTA
Stage193 CTACTGCGACATCTTATCTA GCGAAAAAATTTACATTGGCAGATATTCTGGC
Stage194 AAAAGAGTCCGTCTATCAGGGCGAGTCAAAGG
Stage195 CAGGGCGCGGAACGGTACGCCAGACACCGAGT
Stage196 TATTAAACACAAGAAAAATAATATGGTTAGAA
Stage197 CCTACCATATCATATTCCTGATTACGAACGTT
Stage198 ATTAATTTCGTCAATAGATAATACACTAATAG
Stage199 ATTAGAGCTCAATATCTGGTCAGTAACAGTGC
Stage200 CACGCTGAACATCGCCATTAAAAAAACTGATA
Stage201 GCCCTAAAATAGAACCCTTCTGACTCGTCTGA
Stage202 AATGGATTGGTAATATCCAGAACAAACTATCG
Stage203 GCCTTGCTCTGTCCATCACGCAAAAAAGGGAT
Stage204 TTTAGACAGTACTATGGTTGCTTTGACGAGCA
Stage205 AATTTACGTTTCCTTATCATTCCAAGAACGGG
Stage206 TGGCAATTTTCTGAATAATGGAAGCCCATCCT
Stage207 ATTTAGAATATTAAATCCTTTGCCTCAGATGA
Stage208 CAACAGTTTTTAGGAGCACTAACAATTTGAGG
Stage209 GAACCACCTATTAACACCGCCTGCTGGCAAAT
Stage210 GTAAGAATTAGTCTTTAATGCGCGTACCGAAC
Stage211 GCCAGCCAACATTTTGACGCTCAACTGAAAGC
Stage212 TGTAGCAATGAGTAGAAGAACTCAATATTACC
Stage213 CGTATAACAAACAGGAGGCCGATTTTAACCGT
Stage214 TCAATAATCGGCTGTCAGCATGTAGAAACCAATTTTATTGTTTG
Stage215 GATTATACCATCAATATAATCCTGTTTTACAATTCG
Stage216 ACAACTCGGTATTAGACTTTACAATTTTGGTTATCT


Stage217 AAAATATCGAAAGGAATTGAGGAATTTTGAGGTGAG


Stage218 GCGGTCAGAGCAGAAGATAAAACATTTTATTTTTGA
== DNA sequence ==


Stage219 ATGGCTATACGTGGCACAGACAATTTTTGCTCATGG
You can download the staples DNA sequences for the triangular prism body and the DNA origami field by clicking [http://openwetware.org/wiki/Image:Staples_sequences1.xlsx here].
[[Image:Plan_A_stage1.jpg|300px|left|thumb|Figure5. DNA origami Field]]


Stage220 AAATACCTTTGCAACAGGAAAAACTTTTAATAACAT
[[Image:tri staple.jpg|450px|right|thumb|Figure6: triangular prism sequence of staples. <br />red for leg, green for prism, purple for capture-leg]]


Stage221 CACTTGCCTACTTCTTTGATTAGTTTTTAATCAGAG
[[Image:field_subst_leg.jpg|200px|left|thumb|Figure7. Field & substrate & leg]]


Stage222 CGGGAGCTGTGCTTTCCTCGTTAG
<html><div style="clear:both;"></div></html>

Latest revision as of 01:41, 2 November 2011

<html>

<style rel="stylesheet" type="text/css">

      .clear {clear:both;}
 #verticalmenu {

/*this .CSS is inspired by http://www.javascriptkit.com/ */ font-family: "Comic Sans MS" , "Brush Script MT",serif, sans-serif, monospace, cursive, fantasy; list-style:none;}

  1. verticalmenu a:hover {

color: #aa1d1d; /* color when the click is over the main menu text-transform: uppercase; font-size: 10px; */


}

a:visited { color:#00a5ea; text-decoration: none }

.glossymenu, .glossymenu li ul{ list-style-type: none; margin: 0; padding: 0; width: 250px; /*WIDTH OF MAIN MENU ITEMS*/ border: 1px solid black; list-style:none; }

.glossymenu li{ position: relative; }

.glossymenu li a{ background: white url(http://openwetware.org/images/a/a7/Glossyback2.jpg) repeat-x bottom left; font: bold 17px Verdana, Helvetica, sans-serif; color: white; display: block; width: auto; padding: 10px 0; padding-left: 10px; text-decoration: none; }

.glossymenu li ul{ /*SUB MENU STYLE*/ position: absolute; width: 200px; /*WIDTH OF SUB MENU ITEMS*/

left: 0; top: 0; display: none; }

.glossymenu li ul li{ float: left; }

.glossymenu li ul a{ width: 190px; /*WIDTH OF SUB MENU ITEMS - 10px padding-left for A elements */ }

.glossymenu .arrowdiv{ position: absolute; right: 2px; background: transparent url(http://openwetware.org/images/6/69/Arrow.gif) no-repeat center right; }

.glossymenu li a:visited, .glossymenu li a:active{ color: white; }

.glossymenu li a:hover{ background-image: url(http://openwetware.org/images/5/50/Glossyback.jpg); }

/* Holly Hack for IE \*/

  • html .glossymenu li { float: left; height: 1%; }
  • html .glossymenu li a { height: 1%; }

/* End */

</style>

<script type="text/javascript">

/***********************************************

  • CSS Vertical List Menu- by JavaScript Kit (www.javascriptkit.com)
  • Menu interface credits: http://www.dynamicdrive.com/style/csslibrary/item/glossy-vertical-menu/
  • This notice must stay intact for usage
  • Visit JavaScript Kit at http://www.javascriptkit.com/ for this script and 100s more
                                                                                              • /

var menuids=new Array("verticalmenu") //Enter id(s) of UL menus, separated by commas var submenuoffset=-2 //Offset of submenus from main menu. Default is -2 pixels.

function createcssmenu(){ for (var i=0; i<menuids.length; i++){

 var ultags=document.getElementById(menuids[i]).getElementsByTagName("ul")
   for (var t=0; t<ultags.length; t++){
   var spanref=document.createElement("span")

spanref.className="arrowdiv" spanref.innerHTML="&nbsp;&nbsp;" ultags[t].parentNode.getElementsByTagName("a")[0].appendChild(spanref)

   ultags[t].parentNode.onmouseover=function(){
   this.getElementsByTagName("ul")[0].style.left=this.parentNode.offsetWidth+submenuoffset+"px"
   this.getElementsByTagName("ul")[0].style.display="block"
   }
   ultags[t].parentNode.onmouseout=function(){
   this.getElementsByTagName("ul")[0].style.display="none"
   }
   }
 }

} if (window.addEventListener) window.addEventListener("load", createcssmenu, false) else if (window.attachEvent) window.attachEvent("onload", createcssmenu) </script>

<table border="0" align="center" vertical-align: middle;> <tr>

 <td>

<ul id="verticalmenu" class="glossymenu"> <li><a href="http://openwetware.org/wiki/Biomod/2011/TeamJapan/Sendai">Home</a></li> <li><a href="http://openwetware.org/wiki/Biomod/2011/TeamJapan/Sendai/Strategy">Strategy</a></li> <li><a href="http://openwetware.org/wiki/Biomod/2011/TeamJapan/Sendai/Design">Design</a></li> <li><a href="#">Experiments</a>

   <ul>
   <li><a href="http://openwetware.org/wiki/Biomod/2011/TeamJapan/Sendai/Results/Electrophoresis">Electrophoresis</a> 
   <li><a href="http://openwetware.org/wiki/Biomod/2011/TeamJapan/Sendai/Results/Atomic_Force_Microscope">AFM</a> 
   </ul>

</li> <li><a href="http://openwetware.org/wiki/Biomod/2011/TeamJapan/Sendai/Computational_design/Simulation" >Simulation</a></li> <li><a href="http://openwetware.org/wiki/Biomod/2011/TeamJapan/Sendai/Notes">Notes</a></li> <li><a href="http://openwetware.org/wiki/Biomod/2011/TeamJapan/Sendai/Team">Team</a></li> <li><a href="http://openwetware.org/wiki/Biomod/2011/TeamJapan/Sendai/Resources">Resources</a></li> <li><a href="http://openwetware.org/wiki/Biomod/2011/TeamJapan/Sendai/Sitemap">Sitemap</a></li>


</ul> </td>

 <td>

<img src="http://openwetware.org/images/0/07/3D_sendai.png" width="650"> </td> </tr> </table> </html> <html> <head> <style type="text/css">

  1. content {padding-left: 10px;width: 970px;}}

h3 {font-decoration: none;} h1.firstHeading {display: none; } </style> </head> </html>

<html> <style rel="stylesheet" type="text/css"> /*このスタイルシートの著作権はテンプレート工房TAKEにあります*/ /*ページのレイアウト用css*/

body{ background:#F5F5DC; /*壁色と壁紙設定*/ background-repeat:repeat;/*繰り返さない場合はno-repeatに変更*/ font:"メイリオ", "MS Pゴシック", Osaka, "ヒラギノ角ゴ Pro W3"; color: #333333; margin:0px; padding:0px; }

  1. contents{
     width:900px;

margin:0 auto; background-color: #FFFFFF ;/*コンテンツ内の背景(サイズをぴったりにすること)*/ background-repeat:repeat-y; /*縦に繰り返し*/ border:solid 1px #666666;/*サイトに枠を付ける設定,色の変更可*/

     position:relative;
     font-size:80%;

}


/*ヘッダー部分の設定*/

  1. header{

background-image:url(http://openwetware.org/images/c/c4/TeamSendai-logo3.png) ;/*ヘーダー*/ background-repeat:repeat-x; /*縦に繰り返し*/ background-position:top right; height:140px; /*ヘーダーの高さ*/ }

  1. header p {

font-size: 26px;

       color:#333333;

padding-top: 15px; padding-left: 20px; }


/*上部メニューボタンの設定*/

  1. navbar{
     background-color:#FFFFFF; 
     width: 100%;
     height:40px;
     position:margine;
     top:100px;
     left:0px;
     border-top:solid 1px #FFFFFF;
     border-bottom:solid 1px #FFFFFF; 
     }


  1. navbar ul{
         margin:0;

padding:0; list-style-type:none; font-family:Arial, Helvetica, sans-serif; font-size: 12px; line-height:40px; letter-spacing:2px; }

  1. navbar li{
     background-color:#000099;  /*上部メニューのボタンの背景*/

float:left; width:146px; /*メニューボタンの幅*/ text-align:center; padding:0; border-right:solid 1px #ffffff; }

  1. navbar ul a:hover{
  	background-color:#0033cc;	/*メニューボタンにカーソルが来た時に背景*/

width:146px; /*メニューボタンの幅*/ }

  1. navbar a{
     color:#ffffFF;/*メニューボタンの文字の色*/

display:block; }

  1. navbar a:hover{
  color:#999999; /*メニューの文字がカーソルが来た時、この色に変わる*/
  }



/*サイドメニューの設定*/

  1. side{

background-color:#ddffff;

     width:220px;/*サイドの幅(変更するときはコンテンツ背景も変更すること)*/

position:margin; top:600px;/*上からの位置*/ left:12px; }

  1. side h3 {

font-size: 90%; border: double 3px #FFFFFF; color:#ffffff; text-align: center; background-color:#999999;

     width:190px;

line-height: 30px; margin-top: 10px; margin-left: 5px; margin-bottom: 5px; }

  1. side h3 a {
     color:#ffffff;

font-weight:normal; }

  1. side ul{
     font-size:100%;

line-height:220%; /*サイドの文字と文字の行間設定*/ background-color: #ddffff; margin:0px; padding-left:10px; }

  1. side ul a:hover {
     width:180px;

background-color: #99ffff; /*サイドのカーソルオーバー時の背景色*/ color: #999999; /*サイドのカーソルオーバー時の文字色*/ }

  1. side ul{
    list-style-type:none;

padding-left:2px; }

  1. side li{

padding-left:15px; /*文字の左端からの位置*/ }

  1. side li a{
    color:#333333;/*サイドの文字色*/
    width:180px;
    display:block;

}

  1. side .ad_list li{
    background-image:none;

padding-left:0; }



/*右側メイン部分の設定*/

  1. main{
     width:630px;
     padding-top:15px;
     margin-left:240px;

}



/*下部のフッター部分の設定*/ address{ font-size:80%; font-style:normal; text-align:center; padding-top:5px; }

address{

     background-color:#000066;
     color:#ffffff;
         width:882px;

padding-bottom:10px; border:none; } address a{

     color:#ff9999;

}


/*文字の設定*/ h1{ font-size:60%; letter-spacing: 2px; padding-left:10px; margin: 0px; }

h1 a{

     color:#FFFFFF;

font-weight:normal; }


h2{

     font-size:140%;

border-left: 10px solid #000066;

         border-bottom:solid 1px #000099;/*文字の下に線を入れる設定*/
         width:900px;

padding-left: 5px; color:#333333; margin-top: 15px; margin-bottom: 5px; }

h3{

     font-size:120%;

border: solid 1px #111111;

       color:#ffffff;

background-color:#4682B4 ; line-height: 30px; padding-left:10px; margin-top: 10px; margin-bottom: 1px; }

p{

     font-size:90%;/*全体の文字サイズ*/

line-height:150%;/*全体で使う、文字と文字の行間*/

         margin-left:5px;

}

p img{

     float:left;
         margin-top:5px;  /*写真の左にスペースを空ける*/
         margin-left:5px;  /*写真の左にスペースを空ける*/

margin-right:10px; /:写真と文字の間隔*/ }


/*リンク文字の設定*/ a{

    color:#000099;
     text-decoration:none;

} a:hover { color: #FF0000;/*リンクの文字の上にマウスが来た時この色に変わる*/ text-decoration: none; }

  1. purple{
     font-size:120%;

border: solid 1px #111111;

       color:#ffffff;

background-color:#9370DB; line-height: 40px; padding-left:10px; margin-top: 10px; margin-bottom: 1px; }

h5{

     font-size:120%;

border: solid 1px #111111;

       color:#ffffff;

background-color:#FFA500; line-height: 30px; padding-left:10px; margin-top: 10px; margin-bottom: 1px; }

h6{

     font-size:120%;

border: solid 1px #111111;

       color:#ffffff;

background-color:#006400; line-height: 30px; padding-left:10px; margin-top: 10px; margin-bottom: 1px; }

  1. red{
     font-size:120%;

border: solid 1px #111111;

       color:#ffffff;

background-color:#DC143C; line-height: 40px; padding-left:10px; margin-top: 10px; margin-bottom: 1px; }

  1. blue{
     font-size:120%;

border: solid 1px #111111;

       color:#ffffff;

background-color:#191970; line-height: 40px; padding-left:10px; margin-top: 10px; margin-bottom: 1px; }

</style> </html>

Brainstorming

Figure 1.Brainstorming

To improve the efficiency of the molecular robot we gathered many ideas related with the robot design and its mechanism for movement:


Hexagonal prism (suspended)

By design the motion of this kind of robot is rolling rather than walking. This robbot was our first plan.

Advantage
A maximum of 72 legs can be attached to a hexagonal prismatic body.
The robot does not go backwards. Therefore, walking forward efficiently.

Disadvantage
The difficulty in verifying the 3D body design.
The time cost that is necessary to get the robot annealed.
The complexity of the structure due to the different variety of staples.

Here you can find this robot sequence and more information.


Wall runner (suspended)

Over the path we can create two walls that link the start point and goal, analogous to a simple labyrinth.

Advantage
This robot will always go towards one direction.
A novel mechanism for motion.

Disadvantage
This robot may fall at the time of observation by AFM.
The difficulty to make a single wall.


Sticky motif robot (suspended)

This design is a very simple one, where it is combined only four DNA double strands.
The sticky motif robot was our plan B in case we failed to produce the triangular prism robot.
In addition the legs design include both kind of robots for saving time and costs.
Here you can find this robot sequence and more information.


Our activity progress

Here is stage at where our respective designs are:

The hexagonal prism

Annealing of robot’s body
Electrophoresis

The triangular prism

Annealing of robot’s body
Electrophoresis
Annealing of robot’s body and legs
Cutting of excessive M13

Legs

Annealing of field
Cutting of leg and substrate with spider
Putting robot on field


The methods used for the experiments

Freeze'n squeeze

This experiment refers to Harvard team wiki.
Thank you so much Harvard team!!

DNAzyme legs cutting substrates

Substrate with fluorescence

Leg and substrate type A, which attached fluorescence and quencher, have constructed the double helix. By putting in buffer containing Zn2+, fluorescence is separated from quencher, and fluoresce. Therefore, by observing fluorescence, it can be confirmed whether legs and substrate were cut. The process is shown below.

Figure 2. First experiment. All samples include both legs and substrates. Buffer:1; 1×TAE Mg2+. 2, 5, and 8; 1×TAE Mg2+ with Zn2+1mM. 3, 6 and 9; 1×TAE Mg2+ with Zn2+2mM. 4, 7 and 10; 1×TAE Mg2+ with Zn2+10mM. Time after adding buffer:2, 3 and 4; 0min. 5, 6 and 7; 5min. 8, 9 and 10; 30min.

1.Experiment conditions:
Gel: 24% Poly-Acrylamide Gel
Buffer: 1×TAE Mg2+

Leg and substrate with fluorescence were diluted to 100nM, and they were taken every 22 micro / L. As a buffer, 1xTA Mg2+ and 1xTA Mg2+ with Zn2+ (1mM, 2mM, 10mM) were put in. Time after putting in buffer was set to 0min, 5min, and 30min. As a buffer for electrophoresis, 1xTA Mg2+ was used. As a result of electrophoresis, it did not turn out what the bands would show, since only substrate and only leg were not put in as sample. Moreover, there is no telling whether leg and substrate have constructed double helix correctly at normal temperature. So such things were taken into consideration in the next electrophoresis.

Figure3 .Second experiment. 1; only legs. 2; only substrates. 3, 5, 7 and 9; 1×TAE Mg2+. 4, 6, 8, 10 and 11; 1×TAE Mg2+ with Zn2+ 1mM. 3 and 4; 0min after adding buffer. 5 and 6; 15min after. 7 and 8; 15min after (heat-treated). 9 and 10; 15min after (1/3 concentration). 11; 15min after (heat-treated, 1/3 concentration).


2.Experiment conditions:
Gel:24% Poly-Acrylamide Gel
Buffer:1×TAE Mg2+

As a new sample, sample-A and sample-B were added. Sample-A : The substrate and leg are diluted to 100nM and they are put in every 22micro / L . After dipping in boiling water for 2~3 minutes, it dips in cold water for 10 minutes. Buffer is put in after making 2 chains construct certainly. Sample-B : Concentration is set to one third. Because it thought that substrate and leg which were separated approached closely since concentration was too dense, and fluorescence can not react. As a result of electrophoresis, cutting can be checked in all the samples. Therefore, it is thought that substrate and leg will be cut by acting of Mg2+ even if Zn2+ is not included. Moreover, even if heat treatment did not added, the double helix was constructed exactly, and even if it does not make concentration thin, cutting has fully checked. It is considered as a cause that Mg2+ is acting. In the next experiment, the effect of Mg2+ was observed by using buffer which does not contain Mg2+ for gel and electrophoresis.


3.By putting in buffer containing Mg2+, legs and substrate were cut (refer to this page). As an action of Zn2+, it turned out from the difference of luminosity in 0min that the initial velocity of cutting becomes quick a little by using buffer containing Zn2+.

Substrate without fluorescence

Since a stain solution was not used in the experiment using substrate with fluorescence, in order to investigate whether it can be checked that reg and substrate have been cut even when a stain solution is used, carried out experiment using substrate without fluorescence.


Method for cutting the M13

To cut m13, specific part of m13 sequence form a double helix, secondly react by enzyme, finally clean up of discarded enzyme and pick out only M13. The process is shown below.

Form a double helix

Mix 5μL M13(84nM), 3μL DNA that specific part of m13 sequence form a double helix(5μM), 2μL Buffer BSA, 2μL BalⅠ buffer, and 5μL mQ.
Set in PCR, the condition is 3min at 95°C, 3min at 65°C, for the duration of enzyme reaction, let the sample at 37°C.

Cutting M13 by enzyme reaction

Add 1μL BalⅠin the sample, let the sample stand for 2 hours at 37°C.
Add 3μL 10×H buffer and 7μL mQ, add 1μL PstⅠ, let the sample stand for 1 hours at 37°C.

Clean up of enzyme

The first method

  • All centrifugation steps are carried out at 16,000×g(13,000 rpm) in a conventional tabletop micro-centrifuge at room temperature.

Add 5 volumes of Buffer PBI to 1 volume of the cutting M13 and mix.
Place a columns in a 2ml collection tube.
To bind DNA, apply the sample to the columns and centrifuge for 1min.
Discard flow-through.Place the columns back into the same tube.
To wash, add 0.75ml Buffer PE to the columns and centrifuge for 1min.
Discard flow-through and place the columns back in the same tube. Centrifuge the columns for additional 1 min.
Place columns in a clean 1.5ml micro-centrifuge tube.
To elute DNA, add 25 μL Buffer EB (10mM Tris-Cl, pH8.5) to the center of the columns, let the columns stand for 1 min, and then centrifuge for 1 min.

The first method is to make sure of cut M13, so this method is mixing long cut M13 and short(we want) cut M13.


The second method

  • All centrifugation steps are carried out at 16,000×g(13,000 rpm) in a conventional tabletop micro-centrifuge at room temperature.

Add 1/10 volumes of Sodium Acetate, and 2.5 volumes of ethanol to 1 volume of the cutting M13 and mix, and then centrifuge for 10 min.
Discard supernatant being careful not to throw out DNA pellet.
Dissolve pellet in 1×TE buffer.
After electrophoresis, excise the DNA fragment from the agarose gel with a clean, sharp scalpel. Excise the DNA fragment from the agarose gel with a clean, sharp scalpel.
Weight the gel slice in a colorless tube. Add 3 volumes of Buffer QG to 1 volume of gel.
Incubate at 50°C for 10 min. To help dissolve gel, mix by vortexing the tube every 3 min during the incubation.
After the gel slice has dissolve completely, add 1 gel volumes of isopropanol to the sample and mix.
Place a columns in a provided 2ml collection tube.
To bind DNA, apply the sample to the columns, and centrifuge for 1 min.
Discard flow-though and place columns back in the same collection tube.
Add 0.5ml of Buffer QG to columns and centrifuge for 1 min.
To wash, add 0.75 ml of Buffer PE to columns and centrifuge for 1 min.
Discard the flow-though and centrifuge the columns for an additional 1 min.
Place columns into a clean 1.5 ml micro-centrifuge tube.
To elute DNA, add 25 μL Buffer EB (10mM Tris-Cl, pH8.5) to the center of the columns, let the columns stand for 1 min, and then centrifuge for 1 min.

The second method can purify only short(we want) M13.


Molecular spider's experiment as practice

For practice to observe by AFM, we carried out experiment about molecular spider.

  • The creating method of STV:C-Leg=1:4

STV 5mg/ml in K2HPO4:KH2PO4=5:11 pH6.5 2.1μl
Capture-Leg 16nM 8μl
Mg2+ 1M 0.6μ
Tris:Tris-HCl=2.5:7.4 pH7.4 1μ
MQ 38.3μl
In this case,all is 50μl.

We failed to observe the molecular spider on DNA origami field. We guess that our failure was resulted from that our spider was not purified through HPLC.


DNA sequence

You can download the staples DNA sequences for the triangular prism body and the DNA origami field by clicking here.

Figure5. DNA origami Field
Figure6: triangular prism sequence of staples.
red for leg, green for prism, purple for capture-leg
Figure7. Field & substrate & leg

<html><div style="clear:both;"></div></html>