Biomod/2011/Aarhus/DanishNanoArtists/Supplementary/Literature

From OpenWetWare

< Biomod | 2011 | Aarhus/DanishNanoArtists | Supplementary
Revision as of 14:38, 2 November 2011 by Steffen Sparvath (Talk | contribs)
(diff) ←Older revision | Current revision (diff) | Newer revision→ (diff)
Jump to: navigation, search



Bibliography

[1] J. D. Watson and F. H. C. Crick. Molecular structure of nucleic acids. Nature, 171(11):96–98, 1953.

[2] Alexander Rich. Discovery of the hybrid helix and the first DNA-RNA hybridization. The Journal of biological chemistry, 281(12):7693–6, March 2006.

[3] Jeremy M. Berg, John L. Tymoczko, and Lubert Stryer. Biochemistry. W. H. Freeman and Company, New York, 6th edition, 2006.

[4] Peter Yakovchuk, Ekaterina Protozanova, and Maxim D Frank-Kamenetskii. Base-stacking and base-pairing contributions into thermal stability of the DNA double helix. Nucleic acids research, 34(2):564–74, January 2006.

[5] J. Marmur and P. Doty. Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. Journal of Molecular Biology, 5(1):109–118, 1962.

[6] R. B. Wallace, J. Shaffer, R. F. Murphy, J. Bonner, T. Hirose, and K. Itakura. Hybridization of synthetic oligodeoxyribonucleotides to phi chi 174 DNA: the effect of single base pair mismatch. Nucleic Acids Research, 6(11):3543–3557, 1979.

[7] K. J. Breslauer, R. Frank, H. Blöcker, and L. A. Marky. Predicting DNA duplex stability from the base sequence. Proceedings of the National Academy of Sciences of the United States of America, 83(11):3746–50, June 1986.

[8] Richard Owczarzy, Bernardo G. Moreira, Yong You, Mark A. Behlke, and Joseph A. Walder. Predicting stability of DNA duplexes in solutions containing magnesium and monovalent cations. Biochemistry, 47(19):5336–53, May 2008.

[9] N. C. Seeman. Nucleic acid junctions and lattices. Journal of theoretical biology, 99(2):237–47, November 1982.

[10] J. Chen and N.C. Seeman. Synthesis from DNA of a molecule with the connectivity of a cube. Nature, 350(6319):631–633, 1991.

[11] E.Winfree, F. Liu, L. A.Wenzler, and N. C. Seeman. Design and self-assembly of two-dimensional DNA crystals. Nature, 394(6693):539–44, August 1998.

[12] Yu He, Ye Tian, Yi Chen, Zhaoxiang Deng, Alexander E. Ribbe, and Chengde Mao. Sequence symmetry as a tool for designing DNA nanostructures. Angewandte Chemie (International ed. in English), 44(41):6694–6, October 2005.

[13] Peixuan Guo. The emerging field of RNA nanotechnology. Nature nanotechnology, 5(12):833–42, December 2010.

[14] Yu He, Tao Ye, Min Su, Chuan Zhang, Alexander E. Ribbe, Wen Jiang, and Chengde Mao. Hierarchical self-assembly of DNA into symmetric supramolecular polyhedra. Nature, 452(7184):198–201, March 2008.

[15] Chuan Zhang, Seung Hyeon Ko, Min Su, Yujun Leng, Alexander E. Ribbe, Wen Jiang, and Chengde Mao. Symmetry controls the face geometry of DNA polyhedra. Journal of the American Chemical Society, 131(4):1413–5, February 2009.

[16] Yu He, Min Su, Ping-an Fang, Chuan Zhang, Alexander E. Ribbe, Wen Jiang, and Chengde Mao. On the Chirality of Self-Assembled DNA Octahedra. Angewandte Chemie, pages n/a–n/a, December 2009.

[17] Chuan Zhang, Min Su, Yu He, Xin Zhao, Ping-an Fang, Alexander E. Ribbe, Wen Jiang, and Chengde Mao. Conformational flexibility facilitates selfassembly of complex DNA nanostructures. Proceedings of the National Academy of Sciences of the United States of America, 105(31):10665–9, August 2008.

[18] Felicie F. Andersen, Bjarne Knudsen, Cristiano Luis Pinto Oliveira, Rikke F. Frø hlich, Dinna Krüger, Jörg Bungert, Mavis Agbandje-McKenna, Robert McKenna, Sissel Juul, Christopher Veigaard, Jø rn Koch, John L. Rubinstein, Bernt Guldbrandtsen, Marianne S. Hede, Göran Karlsson, Anni H. Andersen, Jan Skov Pedersen, and Birgitta R. Knudsen. Assembly and structural analysis of a covalently closed nano-scale DNA cage. Nucleic Acids Research, 36(4):1113–9, March 2008.

[19] Russell P. Goodman, Richard M. Berry, and Andrew J. Turberfield. The singlestep synthesis of a DNA tetrahedron. Chemical communications (Cambridge, England), 44(12):1372–3, June 2004.

[20] Christoph M. Erben, Russell P. Goodman, and Andrew J. Turberfield. A self-assembled DNA bipyramid. Journal of the American Chemical Society, 129(22):6992–3, June 2007.

[21] Kirill a Afonin, Eckart Bindewald, Alan J. Yaghoubian, Neil Voss, Erica Jacovetty, Bruce a Shapiro, and Luc Jaeger. In vitro assembly of cubic RNAbased scaffolds designed in silico. Nature nanotechnology, 5(9):676–82, September 2010.

[22] PaulW. K. Rothemund. FoldingDNAto create nanoscale shapes and patterns. Nature, 440(7082):297–302, March 2006.

[23] Renée Schroeder, Andrea Barta, and Katharina Semrad. Strategies for RNA folding and assembly. Nature reviews. Molecular cell biology, 5(11):908–19, November 2004.

[24] Yamuna Krishnan and Friedrich C. Simmel. Nucleic acid based molecular devices. Angewandte Chemie (International ed. in English), 50(14):3124–56, March 2011.

[25] Ebbe S. Andersen, Mingdong Dong, Morten M. Nielsen, Kasper Jahn, Allan Lind-Thomsen,Wael Mamdouh, Kurt V. Gothelf, Flemming Besenbacher, and Jø rgen Kjems. DNA origami design of dolphin-shaped structures with flexible tails. ACS nano, 2(6):1213–8, June 2008.

[26] Ebbe S. Andersen, Mingdong Dong, Morten M. Nielsen, Kasper Jahn, Ramesh Subramani, Wael Mamdouh, Monika M. Golas, Bjoern Sander, Holger Stark, Cristiano L. P. Oliveira, Jan Skov Pedersen, Victoria Birkedal, Flemming Besenbacher, Kurt V. Gothelf, and Jø rgen Kjems. Self-assembly of a nanoscale DNA box with a controllable lid. Nature, 459(7243):73–6, 2009.

[27] Akinori Kuzuya and Makoto Komiyama. Design and construction of a box-shaped 3D-DNA origami. Chemical communications (Cambridge, England), 45(28):4182–4, July 2009.

[28] Yonggang Ke, Jaswinder Sharma, Minghui Liu, Kasper Jahn, Yan Liu, and Hao Yan. Scaffolded DNA origami of a DNA tetrahedron molecular container. Nano letters, 9(6):2445–7, June 2009.

[29] Shawn M. Douglas, Hendrik Dietz, Tim Liedl, Björn Högberg, Franziska Graf, andWilliam M. Shih. Self-assembly of DNA into nanoscale three-dimensional shapes. Nature, 459(7245):414–8, May 2009.

[30] Kasper Jahn. Advances in Structural and Functional Properties of DNAnanotechnology. Phd thesis, Aarhus University, Denmark, 2011.

[31] W.M. Shih, J.D. Quispe, and G.F. Joyce. A 1.7-kilobase single-stranded DNA that folds into a nanoscale octahedron. Nature, 427(6975):618–621, 2004.

[32] Björn Högberg, Tim Liedl, and William M. Shih. Folding DNA origami from a double-stranded source of scaffold. Journal of the American Chemical Society, 131(26):9154–5, July 2009.

[33] Jonathan Bath and Andrew J. Turberfield. DNA nanomachines. Nature nanotechnology, 2(5):275–284, 2007.

[34] B. Yurke, A. J. Turberfield, A. P. Mills, F. C. Simmel, and J. L. Neumann. A DNA-fuelled molecular machine made of DNA. Nature, 406(6796):605–8, August 2000.

[35] C. Mao, W. Sun, Z. Shen, and N. C. Seeman. A nanomechanical device based on the B-Z transition of DNA. Nature, 397(6715):144–6, January 1999.

[36] Kemin Wang, Zhiwen Tang, Chaoyong James Yang, Youngmi Kim, Xiaohong Fang,Wei Li, YanrongWu, Colin D. Medley, Zehui Cao, Jun Li, Patrick Colon, Hui Lin, and Weihong Tan. Molecular engineering of DNA: molecular beacons. Angewandte Chemie (International ed. in English), 48(5):856–70, January 2009.

[37] I. Biswas, A. Yamamoto, and P. Hsieh. Branch migration through DNA sequence heterology. Journal of molecular biology, 279(4):795–806, June 1998.

[38] David Yu Zhang and Georg Seelig. Dynamic DNA nanotechnology using strand-displacement reactions. Nature chemistry, 3(2):103–13, February 2011.

[39] Russell P. Goodman, Mike Heilemann, Sören Doose, Christoph M. Erben, Achillefs N. Kapanidis, and Andrew J. Turberfield. Reconfigurable, braced, three-dimensional DNA nanostructures. Nature nanotechnology, 3(2):93–6, February 2008.

[40] Friedrich C. Simmel. Processive motion of bipedal DNA walkers. Chemphyschem : a European journal of chemical physics and physical chemistry, 10(15):2593–7, October 2009.

[41] Jong-Shik Shin and Niles A. Pierce. A synthetic DNA walker for molecular transport. Journal of the American Chemical Society, 126(35):10834–5, September 2004.

[42] William B. Sherman and Nadrian C. Seeman. A Precisely Controlled DNA BipedWalking Device. Nano Letters, 4(7):1203–1207, July 2004.

[43] Hongzhou Gu, Jie Chao, Shou-Jun Xiao, and Nadrian C. Seeman. A proximity-based programmable DNA nanoscale assembly line. Nature, 465(7295):202–5, May 2010.

[44] Elizabeth a Jares-Erijman and Thomas M. Jovin. FRET imaging. Nature biotechnology, 21(11):1387–95, November 2003.

[45] T. Ha. Single-molecule fluorescence resonance energy transfer. Methods (San Diego, Calif.), 25(1):78–86, September 2001.

[46] Chirlmin Joo, Hamza Balci, Yuji Ishitsuka, Chittanon Buranachai, and Taekjip Ha. Advances in single-molecule fluorescence methods for molecular biology. Annual review of biochemistry, 77:51–76, January 2008.

[47] Bernard Valeur. Molecular Fluorescence: Principles and Applications. WILEYVCH Verlag GmbH, 2002.

[48] Mark A. Muyskens. The Fluorescence of Lignum nephriticum : A Flash Back to the Past and a Simple Demonstration. Journal of Chemical Education, 83(5):765–768, 2006.

[49] Gabriel G. Stokes. On the Change of Refrangibility of Light. Philosophical Transactions of the Royal Society of London, 142:463–562, 1852.

[50] T. Förster. Transfer mechanisms of electronic excitation. Radiation Research Supplement, 27(7-18):7–17, 1959.

[51] R. M. Clegg. Fluorescence resonance energy transfer and nucleic acids. Methods in Enzymology, 211(1971):353–388, 1992.

[52] Ingo H. Stein, Verena Schüller, Philip Böhm, Philip Tinnefeld, and Tim Liedl. Single-molecule FRET ruler based on rigid DNA origami blocks. Chemphyschem : a European journal of chemical physics and physical chemistry, 12(3):689–95, February 2011.

[53] Simon Sindbert, Stanislav Kalinin, Hien Nguyen, Andrea Kienzler, Lilia Clima, Willi Bannwarth, Bettina Appel, Sabine Müller, and Claus A. M. Seidel. Accurate distance determination of nucleic acids via Förster resonance energy transfer: implications of dye linker length and rigidity. Journal of the American Chemical Society, 133(8):2463–80, March 2011.

[54] Asif Iqbal, Sinan Arslan, Burak Okumus, Timothy J. Wilson, Gerard Giraud, David G. Norman, Taekjip Ha, and David M. J. Lilley. Orientation dependence in fluorescent energy transfer between Cy3 and Cy5 terminally attached to double-stranded nucleic acids. Proceedings of the National Academy of Sciences of the United States of America, 105(32):11176–81, August 2008.

[55] Christoph M. Erben, Russell P. Goodman, and Andrew J. Turberfield. Singlemolecule protein encapsulation in a rigid DNA cage. Angewandte Chemie (International ed. in English), 45(44):7414–7, November 2006.

[56] K. B. Mullis, F. Faloona, S. Scharf, R. Saiki, G. T. Horn, and H. A. Erlich. Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harbor Symposia on Quantitative Biology, 51:263–273, 1987.

[57] A. Chien, D. B. Edgar, and J. M. Trela. Deoxyribonucleic acid polymerase from the extreme thermophile Thermus aquaticus. Journal Of Bacteriology, 127(3):1550–1557, 1976.

[58] F. Sanger, S. Nicklen, and A. R. Coulson. DNA sequencing with chainterminating inhibitors. Proceedings of the National Academy of Sciences of the United States of America, 74(12):5463–5467, 1977.

[59] L. M. Smith, J. Z. Sanders, R. J. Kaiser, P. Hughes, C. Dodd, C. R. Connell, C. Heiner, S. B. Kent, and L. E. Hood. Fluorescence detection in automated DNA sequence analysis. Nature, 321(6071):674–679, 1986.

[60] S. Lin-Chao,W. T. Chen, and T. T.Wong. High copy number of the pUC plasmid results from a Rom/Rop-suppressible point mutation in RNA II. Molecular Microbiology, 6(22):3385–93, November 1992.

[61] J. Sambrook, E. F. Fritsch, and T. Maniatis. Molecular Cloning: A Laboratory Manual, Second Edition. Cold Spring Harbor Laboratory Press, New York, second edition, 1989.

[62] Christine Martineau, Lyle G. Whyte, and Charles W. Greer. Development of a SYBR safe technique for the sensitive detection of DNA in cesium chloride density gradients for stable isotope probing assays. Journal of microbiological methods, 73(2):199–202, May 2008.

[63] R. T. Pon. Solid-phase supports for oligonucleotide synthesis. Current protocols in nucleic acid chemistry edited by Serge L Beaucage et al, Chapter 3:Unit 3.1, 2001.

[64] Elbashir, S. M., Lendeckel, W., & Tuschl, T. (2001). RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes and Development, 15(2), 188-200.

[65] Elbashir, S. M., Harborth, J., Lendeckel, W., Yalcin, A., Weber, K., & Tuschl, T. (2001). Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature, 411(6836), 494-498.

[66] Bernstein, E., Caudy, A. A., Hammond, S. M., & Hannon, G. J. (2001). Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature, 409(6818), 363-366.

[67] Bramsen, J. B., Laursen, M. B., Damgaard, C. K., Lena, S. W., Ravindra Babu, B., Wengel, J., et al. (2007). Improved silencing properties using small internally segmented interfering RNAs. Nucleic Acids Research, 35(17), 5886-5897.

[68] Fire, A., Xu, S., Montgomery, M. K., Kostas, S. A., Driver, S. E., & Mello, C. C. (1998). Potent and specific genetic interference by double-stranded RNA in caenorhabditis elegans. Nature, 391(6669), 806-811.

[69] Marathe, R., Anandalakshmi, R., Smith, T. H., Pruss, G. J., & Vance, V. B. (2000). RNA viruses as inducers, suppressors and targets of post-transcriptional gene silencing. Plant Molecular Biology, 43(2-3), 295-306

[70] Zamore, P. D., Tuschl, T., Sharp, P. A., & Bartel, D. P. (2000). RNAi: Double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell, 101(1), 25-33

[71] Clemens, M. J., & Elia, A. (1997). The double-stranded RNA-dependent protein kinase PKR: Structure and function. Journal of Interferon and Cytokine Research, 17(9), 503-524

[72] Gregory, R. I., Chendrimada, T. P., Cooch, N., & Shiekhattar, R. (2005). Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell, 123(4), 631-640

[73] Schwarz, D. S., Hutvágner, G., Du, T., Xu, Z., Aronin, N., & Zamore, P. D. (2003). Asymmetry in the assembly of the RNAi enzyme complex. Cell, 115(2), 199-208

[74] Chen, J. -., Kallenbach, N. R., & Seeman, N. C. (1989). A specific quadrilateral synthesized from DNA branched junctions. Journal of the American Chemical Society, 111(16), 6402-6407

[75] Fu, T. -. (1993). DNA double-crossover molecules. Biochemistry, 32(13), 3211-3220

[76] Yan, H., LaBean, T. H., Feng, L., & Reif, J. H. (2003). Directed nucleation assembly of DNA tile complexes for barcode-patterned lattices. Proceedings of the National Academy of Sciences of the United States of America, 100(14), 8103-8108

[77] Afonin, K. A., Bindewald, E., Yaghoubian, A. J., Voss, N., Jacovetty, E., Shapiro, B. A., et al. (2010). In vitro assembly of cubic RNA-based scaffolds designed in silico. Nature Nanotechnology, 5(9), 676-682

[78] Andersen, E. S., Dong, M., Nielsen, M. M., Jahn, K., Subramani, R., Mamdouh, W., et al. (2009). Self-assembly of a nanoscale DNA box with a controllable lid. Nature, 459(7243), 73-76

[79] Douglas, S. M., Dietz, H., Liedl, T., Högberg, B., Graf, F., & Shih, W. M. (2009). Self-assembly of DNA into nanoscale three-dimensional shapes. Nature, 459(7245), 414-418

[80] Douglas, S. M., Marblestone, A. H., Teerapittayanon, S., Vazquez, A., Church, G. M., & Shih, W. M. (2009). Rapid prototyping of 3D DNA-origami shapes with caDNAno. Nucleic Acids Research, 37(15), 5001-5006

[81] Guo, P. (2010). The emerging field of RNA nanotechnology. Nature Nanotechnology, 5(12), 833-842

[82] Castro, C. E., Kilchherr, F., Kim, D. -., Shiao, E. L., Wauer, T., Wortmann, P., et al. (2011). A primer to scaffolded DNA origami. Nature Methods, 8(3), 221-229

[83] Mathieu, F., Liao, S., Kopatsch, J., Wang, T., Mao, C., & Seeman, N. C. (2005). Six-helix bundles designed from DNA. Nano Letters, 5(4), 661-665

[84] Simmel, F. C. (2008). Three-dimensional nanoconstruction with DNA. Angewandte Chemie - International Edition, 47(32), 5884-5887

[85] Bartel, D. P. (2004). MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell, 116(2), 281-297

[86] Lee, Y., Ahn, C., Han, J., Choi, H., Kim, J., Yim, J., et al. (2003). The nuclear RNase III drosha initiates microRNA processing. Nature, 425(6956), 415-419

[87] Lee, R. C., & Ambros, V. (2001). An extensive class of small RNAs in caenorhabditis elegans. Science, 294(5543), 862-864

[88] Rodriguez, A., Griffiths-Jones, S., Ashurst, J. L., & Bradley, A. (2004). Identification of mammalian microRNA host genes and transcription units. Genome Research, 14(10 A), 1902-1910

[89] Lee, Y., Jeon, K., Lee, J. -., Kim, S., & Kim, V. N. (2002). MicroRNA maturation: Stepwise processing and subcellular localization. EMBO Journal, 21(17), 4663-4670

[90] Filipowicz, W., Bhattacharyya, S. N., & Sonenberg, N. (2008). Mechanisms of post-transcriptional regulation by microRNAs: Are the answers in sight? Nature Reviews Genetics, 9(2), 102-114

[91] Ruby, JG; Jan, CH, Bartel, DP (2007 Jul 5). "Intronic microRNA precursors that bypass Drosha processing". Nature 448 (7149): 83–6

[92] Hohjoh, H. (2002). RNA interference (RNAi) induction with various types of synthetic oligonucleotide duplexes in cultured human cells. FEBS Letters, 521(1-3), 195-199

[93] Paddison, P. J., Caudy, A. A., Bernstein, E., Hannon, G. J., & Conklin, D. S. (2002). Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes and Development, 16(8), 948-958

[94] Parrish, S., Fleenor, J., Xu, S., Mello, C., & Fire, A. (2000). Functional anatomy of a dsRNA trigger: Differential requirement for the two trigger strands in RNA interference. Molecular Cell, 6(5), 1077-1087

[95] Theis, M., & Buchholz, F. (2011). High-throughput RNAi screening in mammalian cells with esiRNAs. Methods, 53(4), 424-429

[96] Kittler, R., Surendranath, V., Heninger, A. -., Slabicki, M., Theis, M., Putz, G., et al. (2007). Genome-wide resources of endoribonuclease-prepared short interfering RNAs for specific loss-of-function studies. Nature Methods, 4(4), 337-34

[97] McAllister, C. S., & Samuel, C. E. (2009). The RNA-activated protein kinase enhances the induction of interferon-β and apoptosis mediated by cytoplasmic RNA sensors. Journal of Biological Chemistry, 284(3), 1644-1651

[98] Kim, D. -., Longo, M., Han, Y., Lundberg, P., Cantin, E., & Rossi, J. J. (2004). Interferon induction by siRNAs and ssRNAs synthesized by phage polymerase. Nature Biotechnology, 22(3), 321-325

[99] Yurke, B., Turberfield, A. J., Mills Jr., A. P., Simmel, F. C., & Neumann, J. L. (2000). A DNA-fuelled molecular machine made of DNA. Nature, 406(6796), 605-608

[100] Seeman, N. C. (2007). An overview of structural DNA nanotechnology. Molecular Biotechnology, 37(3), 246-257

[101] Jaeger, L., & Chworos, A. (2006). The architectonics of programmable RNA and DNA nanostructures. Current Opinion in Structural Biology, 16(4), 531-543

[102] Schroeder, R., Barta, A., & Semrad, K. (2004). Strategies for RNA folding and assembly. Nature Reviews Molecular Cell Biology, 5(11), 908-919

[103] Grabow, W. W., Zakrevsky, P., Afonin, K. A., Chworos, A., Shapiro, B. A., & Jaeger, L. (2011). Self-assembling RNA nanorings based on RNAI/II inverse kissing complexes. Nano Letters, 11(2), 878-887



Personal tools