BioMicroCenter:News: Difference between revisions

From OpenWetWare
Jump to navigationJump to search
No edit summary
 
(109 intermediate revisions by 9 users not shown)
Line 1: Line 1:
{{BioMicroCenter}}
{{BioMicroCenter}}


.
== Welcome to the MIT BIOMICRO CENTER ==


{|
{|
|rowspan=2 valign=top style="width:55%;padding-right:10px;"|  
|valign=top style="width:60%;padding-right:10px;"|  
===JANUARY/FEBRUARY NEWSLETTER===
== BioMicro Center News ==


January/February 2009 - HIGHLIGHTS
* New BioMicro Website at http://web.mit.edu/biomicro
* New plate reader available for use in 68-252d.
* Tecan EVO robotic training Feb 14th
* BioMicro Center Renovation in February


It has been a very busy month in the BioMicro Center and we have a number of improvements to share with everyone. First, this month we have activated our new website (http://web.mit.edu/biomicro). This page has information about all of the resources available at the BioMicro Center as well as forms for download, calendars to schedule time on our machines and prices. The website is also set up as a wiki on the OpenWetWare platform to create a repository for information to help optimize experiments and to help shape the site to make it more useful to you. We are continuing to improve the site so check back often. You can [[Join|sign up for a wiki account.]]


This month we also introduced the Varioskan plate reader. This plate reader can handle plates from 6 to 384 wells and can do fluorometrics, lumisetrics and photometrics at most wavelengths between 200 and 1000nm (there is some variability depending on the application). The Varioskan is also capable of doing real time kinetic experiments and has the ability to add up to three reagents to the plate. The Varioskan is currently located in 68-252d. More information, including data validation and a calendar to schedule time on the Varioskan can be found on [[BioMicroCenter:Varioskan|our website]].
|valign="top"|


We are also proceeding apace with our activation of the Tecan EVO robotic liquid handler. The EVO is able to automate most routine molecular biology protocols for high-throughput. We have scheduled a training session for the EVO on February 14th with the staff from Tecan. If you are interested in learning about the EVO or the types of reactions that can be run on the machine, or in attending the training session, please contact me.
== ABOUT THE BIOMICRO CENTER ==


Lastly, we are beginning the process of remodeling the BioMicro Center lab space to create more room. We are planning on doing this stepwise so as to have as minimal an impact on our services as possible, though access to portions of the lab may be restricted at times. The final layout is also [[BioMicroCenter:RenoPlans|on our website]] along with all of our monthly updates.  
The MIT BioMicro Center was founded in 2000 as the core bio-fabrication and microarray processing facility at MIT. The Center is a joint endeavor between the [http://biology.mit.edu Department of Biology], the [http://ki.mit.edu Koch Institute for Integrative Cancer Research], the [http://be.mit.edu Department of Biological Engineering] and the [http://cehs.mit.edu MIT Center for Environmental Health Sciences.] The BioMicro Center provides MIT faculty members with integrated facilities for high-throughput data-intensive genomics, bioinformatic analysis, as well as large-scale database storage, management, data mining and data modeling required to fully implement systems approaches to investigate a broad spectrum of biological problems. The BioMicro Center is designed to maximize the likelihood of successfully designing, implementing, and analyzing systems biology data. With an expert staff available for consultation and collaboration, including several full time bioinformatics scientists and experimentalist with significant experience in systems biology, ample resources exist to assist MIT researchers in any aspect of the research project. This unique cross-disciplinary collaboration leverages resources, spreading institutional commitment, and providing an environment that strongly encourages intellectual rapport between scientists that contributes to the success of projects. This collaborative environment creates a unique opportunity for interactions of biologists and biological engineers who study a broad range of problems. Investigators are able to adopt novel techniques to address their topics of interest as well as develop new collaborations throughout the institute. <BR><BR>


-Stuart Levine
Experimental and analytical work done in the BioMicro Center is funded by the NIH and must be made available through the NIH's open access policy. All Koch Institute and CEHS labs '''must''' acknowledge their core grants for work done in the core with the following language.
* KI ''"This work was funded by the National Cancer Institute of the NIH under award P30-CA14051"''
* [[BioMicroCenter:CEHS13|CEHS]] ''"This work was funded by the National Institute of Environmental Health Sciences of the NIH under award P30-ES002109"''


== PUBLICATIONS ==


|-
Publications from [https://www.ncbi.nlm.nih.gov/sites/myncbi/stuart.levine.1/bibliography/47165401/public/?sortby=pubDate&sdirection=descending Stuart Levine]
|valign="top" width="45%"|
 
===RECENT & UPCOMING CHANGES===
 
{{BioMicroCenter:News/Changes/Content}}


== PREVIOUS NEWSLETTERS ==
'''[[BioMicroCenter:News2017+|2017+]]'''<BR>
'''[[BioMicroCenter:News2016|2016]]'''<BR>
'''[[BioMicroCenter:News2015|2015]]'''<BR>
'''[[BioMicroCenter:News2014|2014]]'''<BR>
'''[[BioMicroCenter:News2013|2013]]'''<BR>
'''[[BioMicroCenter:News2012|2012]]'''<BR>
'''[[BioMicroCenter:News2011|2011]]'''<BR>
'''[[BioMicroCenter:News2010|2010]]'''
<br>


<B><BIG>PREVIOUS NEWSLETTERS </BIG></B>
== RECENT CHANGES TO THE WEBSITE ==
 
{|
|'''[[BioMicroCenter:News/2009|2009]]'''
|-
|{{BioMicroCenter:News/2009/Content}}
|-
|'''[[BioMicroCenter:News/2008|2008]]'''
|-
|{{BioMicroCenter:News/2008/Content}}
|}
 
<br>
<B><BIG>RECENT CHANGES TO THE WEBSITE <\BIG><\B>
{{BioMicroChanges}}
{{BioMicroChanges}}


|}
|}

Latest revision as of 05:26, 28 March 2023

HOME -- SEQUENCING -- LIBRARY PREP -- HIGH-THROUGHPUT -- COMPUTING -- OTHER TECHNOLOGY

.

Welcome to the MIT BIOMICRO CENTER

BioMicro Center News

ABOUT THE BIOMICRO CENTER

The MIT BioMicro Center was founded in 2000 as the core bio-fabrication and microarray processing facility at MIT. The Center is a joint endeavor between the Department of Biology, the Koch Institute for Integrative Cancer Research, the Department of Biological Engineering and the MIT Center for Environmental Health Sciences. The BioMicro Center provides MIT faculty members with integrated facilities for high-throughput data-intensive genomics, bioinformatic analysis, as well as large-scale database storage, management, data mining and data modeling required to fully implement systems approaches to investigate a broad spectrum of biological problems. The BioMicro Center is designed to maximize the likelihood of successfully designing, implementing, and analyzing systems biology data. With an expert staff available for consultation and collaboration, including several full time bioinformatics scientists and experimentalist with significant experience in systems biology, ample resources exist to assist MIT researchers in any aspect of the research project. This unique cross-disciplinary collaboration leverages resources, spreading institutional commitment, and providing an environment that strongly encourages intellectual rapport between scientists that contributes to the success of projects. This collaborative environment creates a unique opportunity for interactions of biologists and biological engineers who study a broad range of problems. Investigators are able to adopt novel techniques to address their topics of interest as well as develop new collaborations throughout the institute.

Experimental and analytical work done in the BioMicro Center is funded by the NIH and must be made available through the NIH's open access policy. All Koch Institute and CEHS labs must acknowledge their core grants for work done in the core with the following language.

  • KI "This work was funded by the National Cancer Institute of the NIH under award P30-CA14051"
  • CEHS "This work was funded by the National Institute of Environmental Health Sciences of the NIH under award P30-ES002109"

PUBLICATIONS

Publications from Stuart Levine

PREVIOUS NEWSLETTERS

2017+
2016
2015
2014
2013
2012
2011
2010

RECENT CHANGES TO THE WEBSITE

List of abbreviations:
N
This edit created a new page (also see list of new pages)
m
This is a minor edit
b
This edit was performed by a bot
(±123)
The page size changed by this number of bytes

26 April 2024

     11:38  Hu:Publications diffhist +308 Hugangqing talk contribs
N    08:47  The Paper that Launched Microfluidics - Xi Ning‎‎ 2 changes history +16,815 [Xning098‎ (2×)]
     
08:47 (cur | prev) −1 Xning098 talk contribs (→‎Introduction)
N    
08:43 (cur | prev) +16,816 Xning098 talk contribs (Created page with "{{Template:CHEM-ENG590E}} ==Introduction== Microfluidics is the science and technology of systems that process or manipulate small (10 <sup> -18 </sup> to 10 <sup>−18 </sup> litres) amounts of fluids, using channels with dimensions of tens to hundreds of micrometres, as stated by George Whitesides. <sup> https://doi.org/10.1038/nature05058 1 </sup>. Microfluidic devices are microchemical systems such as labs on the chip, organs on the chip and plants on the chip....")
     08:43  CHEM-ENG590E:Wiki Textbook‎‎ 3 changes history 0 [Xning098‎ (3×)]
     
08:43 (cur | prev) 0 Xning098 talk contribs Tag: Manual revert
     
08:42 (cur | prev) 0 Xning098 talk contribs Tag: Manual revert
     
08:41 (cur | prev) 0 Xning098 talk contribs
     08:40  The paper that launched microfluidics - Xi Ning‎‎ 15 changes history +250 [Xning098‎ (15×)]
     
08:40 (cur | prev) +18 Xning098 talk contribs (→‎Significance)
     
08:36 (cur | prev) 0 Xning098 talk contribs (→‎Significance)
     
08:34 (cur | prev) +37 Xning098 talk contribs (→‎Significance)
     
08:31 (cur | prev) +3 Xning098 talk contribs (→‎Significance)
     
08:30 (cur | prev) +8 Xning098 talk contribs (→‎Significance)
     
08:28 (cur | prev) −31 Xning098 talk contribs (→‎Significance)
     
08:22 (cur | prev) −1 Xning098 talk contribs (→‎Electrokinetic effect)
     
08:21 (cur | prev) −2 Xning098 talk contribs (→‎Separation and quantification)
     
08:19 (cur | prev) 0 Xning098 talk contribs (→‎Sample dilution)
     
08:19 (cur | prev) 0 Xning098 talk contribs (→‎Sample dilution)
     
08:18 (cur | prev) 0 Xning098 talk contribs (→‎Separation and quantification)
     
08:17 (cur | prev) −1 Xning098 talk contribs (→‎Sample dilution)
     
08:17 (cur | prev) +1 Xning098 talk contribs
     
08:14 (cur | prev) 0 Xning098 talk contribs (→‎Microfluidic set-ups and its efficacy)
     
08:03 (cur | prev) +218 Xning098 talk contribs
     08:20  (Upload log) [Xning098‎ (6×)]
     
08:20 Xning098 talk contribs uploaded File:XiNingFigure2.jpeg
     
08:14 Xning098 talk contribs uploaded File:Figure4Drawn.XiNing.jpeg
     
08:00 Xning098 talk contribs uploaded File:DrawnFigure4XiNing.jpeg
     
07:38 Xning098 talk contribs uploaded File:XiNingDrawnSetup2.png
     
07:35 Xning098 talk contribs uploaded a new version of File:Figure 2 Set-up1.png
     
07:24 Xning098 talk contribs uploaded File:DrawnElectoosmoticflow.jpeg
     05:25  Ernesto-Perez-Rueda:Contact diffhist −94 Ernesto Perez-Rueda talk contribs

25 April 2024

     23:55  Flow and Pattern Asymmetries‎‎ 22 changes history +1,186 [Courtneychau‎ (22×)]
     
23:55 (cur | prev) −14 Courtneychau talk contribs (→‎Mixing on the Microfluidic Scale)
     
23:55 (cur | prev) −43 Courtneychau talk contribs (→‎Reynolds Number (Re))
     
23:55 (cur | prev) −46 Courtneychau talk contribs (→‎Péclet Number (Pe))
     
23:55 (cur | prev) −31 Courtneychau talk contribs (→‎Stokes Flow)
     
23:54 (cur | prev) −151 Courtneychau talk contribs (→‎Stokes Flow)
     
23:50 (cur | prev) +184 Courtneychau talk contribs (→‎References)
     
23:46 (cur | prev) 0 Courtneychau talk contribs (→‎Active Mixing Methods)
     
23:46 (cur | prev) +1 Courtneychau talk contribs (→‎Passive Mixing Methods)
     
23:45 (cur | prev) 0 Courtneychau talk contribs (→‎Chaotic Advection)
     
23:44 (cur | prev) 0 Courtneychau talk contribs (→‎Mixing on the Microfluidic Scale)
     
23:43 (cur | prev) +28 Courtneychau talk contribs (→‎Stokes Flow)
     
23:39 (cur | prev) +1 Courtneychau talk contribs (→‎Stokes Flow) Tag: Manual revert
     
23:38 (cur | prev) −1 Courtneychau talk contribs (→‎Stokes Flow)
     
23:37 (cur | prev) +11 Courtneychau talk contribs
     
23:36 (cur | prev) +15 Courtneychau talk contribs
     
23:33 (cur | prev) 0 Courtneychau talk contribs (→‎References)
     
23:30 (cur | prev) +3 Courtneychau talk contribs (→‎Passive Mixing Methods)
     
23:28 (cur | prev) −426 Courtneychau talk contribs
     
23:16 (cur | prev) +1,656 Courtneychau talk contribs (→‎References)
     
23:14 (cur | prev) 0 Courtneychau talk contribs (→‎Applications of Asymmetric Flow)
     
23:13 (cur | prev) 0 Courtneychau talk contribs (→‎Active Mixing Methods)
     
23:12 (cur | prev) −1 Courtneychau talk contribs (→‎Passive Mixing Methods)