Beauchamp:Electrophysiology: Difference between revisions

From OpenWetWare
Jump to navigationJump to search
No edit summary
 
(141 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{Beauchamp Lab Notebook Navigation Bar}}
{{Beauchamp Navigation Bar}}
<br>
<br>
[[Beauchamp:Old Protocols|Old Protocols]]
==September 2008 E-Phys Protocol==
'''9/22/2008 Setup and Surgery'''  <br>
1. Identify potential electrodes with combined fMRI/CT <br>
2. Create log file on log computer <br>
3. Record resting activity and assess recording setup (Test signal-to-noise, etc.) <br>
'''Microelectrode array experiments''' <br>
If the new electrodes are ready, it will be a top priority to investigate their properties.<br>
Some things to look at: <br>
'''Recording'''<br>
:'''1. Stimulus selectivity''' <br>
:: How does the stimulus-selectivity of microelectrodes differ from large electrodes? <br>
:: How does stimulus-selectivity vary within a single microelectrode array (MEA)? <br>
:'''2. Response latency/duration''' <br>
:: Within an object-selective visual area, do different patches of cortex depolarize at different latencies or for different durations? <br>
:'''3. Receptive Field Size''' <br>
:: Do small electrodes have different RFs than big electrodes? <br>
:: How does RF size vary within and between object-selective visual areas? <br>
:'''4. Gamma oscillation''' <br>
:: Are oscillations in the gamma band more correlated among nearby electrodes than far electrodes?<br>
:'''5. Adaptation'''
:: Do microelectrodes demonstrate different adaptation behavior than large electrodes?
:: Do different microelectrodes within an ME array adapt differently to the same repeated stimuli?
:'''6. Choice probability'''
:: Does the pattern of activity in object-selective cortical areas (as measured by MEAs) correlate in any way with the subject's behavior? <br>
'''Stimulation''' <br>
:'''1. Perception thresholds'''
::Perception thresholds may be lower with microelectrodes because of high current density. <br>
:'''2. Percepts in higher visual areas'''
::If the microelectrodes have smaller RFs or are more feature-selective than the large electrodes, it could mean that sending current through them would activate a more functionally-segregated group of neurons than has previously been possible. If so, microstimulation with microelectrodes may be more likely to evoke percepts in higher-level visual areas than with the large electrodes. <br>
'''Ryan's Adaptation Experiments'''<br>
'''1) [[Beauchamp:Selectivity|Target-detection Selectivity]] – 20 minutes'''<br>
:• 80 stimuli (+5 target stimuli), 20 blocks<br>
:• Stop-sign task (patient reports stop-signs)<br>
'''2) [[Beauchamp:Selectivity|Repeat-detection Selectivity]] – 20 minutes'''<br>
:• 80 stimuli, 20 blocks<br>
:• One-back task (patient reports repetitions of images) <br>
'''3) [[Beauchamp:Adaptation|Multiple-repetitions adaptation]] - 5 minutes''' <br>
:•    20 selective stimuli, 20 nonselective stimuli, 2 Hz presentation, patient is told to press button when he/she sees the stopsign. <br>
:•  trial structure:  8 nonselective stimuli, 8 of the same selective stimulus, 8 nonselective stimuli, 8 different selective stimuli. Stopsign appear at random or at the end of each run. <br>
:•    A rudimentary way to approximate this would be to have several copies of the same image in the image folder, and selecting all of them in the selectivity plugin. <br>
<br>
'''Notes:''' <br>
:•  Now that we can record from all the electrodes simultaneously, it will be less important to identify selective categories. By showing equal amount of all the categories, we can get good sample sizes for several differently-selective electrodes. <br>
:•It would be nice to have a modified version of the current Selectivity plugin to satisfy these conditions: <br>
::1.  the patient is supposed to press the button after stop-signs instead of after repeats <br>
::2. Selective stimuli are directly repeated every 8-12 images <br>
::3. The stimulus preceding the repeat is always a nonselective stimulus <br>
<div style="padding: 8px; color: #000000; background-color: #ffffff; width: 730px; border: 2px solid #666666;">
<div style="padding: 8px; color: #000000; background-color: #ffffff; width: 730px; border: 2px solid #666666;">


Line 24: Line 84:


[[Beauchamp:Perceptual Biasing|Perceptual Biasing]]
[[Beauchamp:Perceptual Biasing|Perceptual Biasing]]
[[Beauchamp:Adaptation|Adaptation]]
[[Beauchamp:Making Grayscale From Color Images|Making Grayscale From Color Images]]


It is also good to collect 10 minutes of resting data (no stimulation) from as many visual electrodes as possible for later analyses.
It is also good to collect 10 minutes of resting data (no stimulation) from as many visual electrodes as possible for later analyses.
Line 29: Line 93:
==Todo list==
==Todo list==
Decide on screening stimuli i.e. pick 20 from each category
Decide on screening stimuli i.e. pick 20 from each category
faces, houses, bodies, scenes, tools <br>
faces, houses, bodies, scenes, tools, scrambles <br>
et rid of bad looking stimuli; make detailed protocol <br>
Get rid of bad looking stimuli; make detailed protocol <br>
 
Install matlab in EMU to allow image scrambling; install scrambling program. <br>
==January 2008 Subjects==
Proposed experiments for January 2008 subjects.
 
 
Focus on ventral temporal and lateral occipital-temporal electrodes with visual responses in fMRI
not on electrodes over early visual cortex<br><br>
EXPERIMENT: object selectivity to determine preferred and nonpreferred stimuli with 5 well-defined categories, including: faces, bodies, houses, scenes, scrambles.<br>
METHODS: Present stimuli at their natural size, centered at the fixation point (unless electrodes are only in one hemisphere, in which case present contralateral). If possible, use large, hi-res color stimuli. If not, whatever we can get. Present stimuli for 125 ms, 375 off (2 Hz rate). Each run will be ~10 minutes, allowing ~10 reps of each stimulus.
 
Task: Subjects will perform one-back repetition detection to ensure attention to the stimulus and maximize responses. Backup task: use target image detection with very long trial duration. <br>
GOALS: Determine preferred objects of the electrode.
 
1) Determine if there is a fine-grained representation of category e.g. within the FFA, are there sites that prefer stimuli from other categories?<br>
2) Is there a sharp tuning within category e.g. within FFA, does the electrode respond to only a single face or many faces?
 
3) Relationship to retinotopy. Malach predicts that FFA is primarily foveal, PPA primarily peripheral.
 
 
ANTICIPATED RESULT:Like in the Malach paper, there will be a sharp tuning with some electrodes only responding to stimuli in their preferred category.<br><br>
EXPERIMENT: For electrode(s) with nice clean responses to a preferred stimulus, do RF mapping with the 3 most-preferred stimuli (or fewer if necessary)<br>
METHODS: Subjects will perform central letter detection task. <br>
GOAL: Determine RFs in higher areas (identified with fMRI)<br>
PREDICTION: Higher areas will have large but not completely homogenous spatial RFs<br>
Possibility:also map RF with less-preferred stimuli<br><br>


EXPERIMENT: stimulation at 2 (up to 8) mA (no psychometrics) to see which, if any, late sites evoke percepts<br>
If there is no percept, at the highest current do 20 trials with behavioral responses to quantify the lack of response. <br>
If there is a percept, see if it is complex or not.
If a simple phosphene in an early site, do 20 trials with behavioral response at a current to prove there was a percept.
If a complex percept or a later site, do the complete psychometric function. <br>
GOAL: additional data for Dona's current paper; pilot data for grant to show that stimulation in higher areas does NOT produce a percept.<br>
ANTICIPATED RESULT: few, if any, sites will produce percepts<br>
<br><br>


EXPERIMENT: stimulation of higher electrodes at 2 (or higher) mA while subject makes object or noise discrimination<br>
1/16/2008
i.e. perceptual biasing with preferred stimuli embedded in noise<br>
Add peak deflection (either -,+ or ABS) to RMS power measurement when ranking stimuli.
Detailed protocol:
 
STEP 1:
take preferred stimulus, add a lot of noise so the subject can only detect it 75% of the time in a 2-AFC
(e.g. FACE or NOISE?)
If there is no preferred stimulus, but strong fMRI response, use a stimulus from preferred fMRI category.
 
STEP 2:
Deliver electrical stimulation while showing the pictures and see if it changes the detection rate.
PREDICTION: Will increase (or decrease the detection rate. <br>
 
DETAILED METHODS:
Present stimulus for 250 ms, deliver stimulation for the entire stimulation period.<br>
FEEDBACK: On no stim trials, subject receives correct, incorrect, no response feedback. On stim trials, subject receives correct (if any response is given) or no response feedback. All stim trials are correct because we do not know the subject's percept.
 
 
2x2 experimental design:
STIM or NO STIM and
PREF STIM+NOISE or NOISE
 
Question: for each cell, we will need multiple JPGs--is this possible?
 
Related experiments:
3x3 experimental design:
HIGH CURRENT STIM, LOW CURRENT STIM, or NO STIM and
PREF STIM, PREF STIM+NOISE, NOISE
 
Repeat with non-preferred stimulus; see if it produces a behavioral effect.<br>
 
Future experiments:
Create a 2-IFC design, where each trial contains face and face+noise, subjects selects the interval containing the  face.
Stimulation is delivered in one of the epochs or neither. <br>
 
 
 
EXPERIMENT:10-min Resting state data (perhaps awake and asleep) <br><br>
If there is ample time:<br>
EXPERIMENT: repeated presentation of preferred stimulus; repeated presentation of nonpreferred stimulus (context: letter detection foveally)<br>
PREDICTION: AAAB more than BBBB<br>
 
EXPERIMENT:Lstudy motion, orientation selectivity using Ping's new screening program <br>
 
 
 
object selectivity with preferred stimulus in big screen of same category stimuli <br>
object selectivity with preferred stimulus in big screen of nonpreferred category stimuli <br>
object selectivity with nonpreferred stimulus in big screen of same category stimuli <br>
object selectivity with nonpreferred stimulus in big screen of preferred category stimuli <br>




Line 121: Line 105:


==Processing Subject Data==
==Processing Subject Data==
see also [[Beauchamp:Electrode_Localization_and_Naming]]
After obtaining the CD containing the patient CT data from St. Luke's, use OsiriX to export all images
After obtaining the CD containing the patient CT data from St. Luke's, use OsiriX to export all images
(using the export to DICOM option, and the hierarchical, uncompress options).
(using the export to DICOM option, and the hierarchical, uncompress options).
Line 151: Line 137:


Check in AFNI to make sure that they alignment is correct. NB: It is also possible to crop the MRI before Allineating since the MR coverage is typically greater than the CT coverage. In a test case, this did not have a big effect.
Check in AFNI to make sure that they alignment is correct. NB: It is also possible to crop the MRI before Allineating since the MR coverage is typically greater than the CT coverage. In a test case, this did not have a big effect.
Next, the electrodes positions are manually located and saved as Tags. Then, these positions can be used to create an Electrodes file for display as spheres in SUMA.
To label the electrodes, a separate .niml.do file can be created with the label for each electrode.
Sample file electrodes.1D
  #spheres
  -20.43      81.53      4.254  0.0 0.0 0.0 1.0  1.1 
  -28.43      76.84      4.254  0.0 0.0 0.0 1.0  1.1         
  -36.43      70.28      4.254  0.0 0.0 0.0 1.0  1.1           
  -42.43      61.84      4.254  0.0 0.0 0.0 1.0  1.1         
  -48.43      54.34      4.254  0.0 0.0 0.0 1.0  1.1           
  -52.43      44.03      4.254  0.0 0.0 0.0 1.0  1.1           
Sample file  testelectrodeslabels.niml.do
  <nido_head
  coord_type = "mobile"
  default_SO_label = "CURRENT"
  bond = "surface"
    default_color = '1.0 1.0 1.0'
  default_font = 'he14'
  />
  <T
  coord = "-20.43      81.53      4.254"
  col = "0.1 0.9 0.1"
  text = "RPIT1"
  />
  />


==Things to do==
==Things to do==
Line 160: Line 172:
HumanLetterDetection
HumanLetterDetection
:Analyze data from LR to see where the RFs are
:Analyze data from LR to see where the RFs are
DEBUGGING KNOT PROBLEMS
First, quit Knot.
Then, unplug one ITC from the USB port, wait for the power light to go off, plug it back in.
Repeat this, one at a time, for all ITCs.
Before beginning experiment, always make sure you get nice traces in Channel Data window, not just flat lines (even if looks nice on oscilloscope).
1-AFC task:
change feedback so that it is not always correct.
can we extend stimulation into the response window?
==Measuring Impedance==
From Nafi
preamp should have a built-in impedance tester? That’s generally a good thing to have with low-impedance electrodes so that you can know what the actual impedance is as you’re recording since how the electrodes are placed can affect the functional impedance. But basically the way they work is that they have a parallel circuit which connects a resistor to the point that the preamp is measuring the voltage. At the other end of the resistor they pass an AC signal (a 1kHz sinusoid is standard), and based on the voltage you read on the preamp you can calculate the impedance; for instance if you’re using a 1MOhm resistor along with a 1V signal, and you read 10mV across the electrode, you’ll know your impedance is roughly 10k (0.10V = 1V*[R/(1M +R)] -> 0.99R = 10,000). To do it by hand you could use a function generator and an oscilloscope, just connect a resistor to where the electrode would connect to the preamp, put the electrodes in saline and apply a signal at the resistor with ground in the saline, and measure the voltage in between the resistor and the electrode using your scope.

Latest revision as of 09:54, 30 March 2013

Brain picture
Beauchamp Lab




Old Protocols

September 2008 E-Phys Protocol

9/22/2008 Setup and Surgery
1. Identify potential electrodes with combined fMRI/CT
2. Create log file on log computer
3. Record resting activity and assess recording setup (Test signal-to-noise, etc.)

Microelectrode array experiments
If the new electrodes are ready, it will be a top priority to investigate their properties.
Some things to look at:
Recording

1. Stimulus selectivity
How does the stimulus-selectivity of microelectrodes differ from large electrodes?
How does stimulus-selectivity vary within a single microelectrode array (MEA)?
2. Response latency/duration
Within an object-selective visual area, do different patches of cortex depolarize at different latencies or for different durations?
3. Receptive Field Size
Do small electrodes have different RFs than big electrodes?
How does RF size vary within and between object-selective visual areas?
4. Gamma oscillation
Are oscillations in the gamma band more correlated among nearby electrodes than far electrodes?
5. Adaptation
Do microelectrodes demonstrate different adaptation behavior than large electrodes?
Do different microelectrodes within an ME array adapt differently to the same repeated stimuli?
6. Choice probability
Does the pattern of activity in object-selective cortical areas (as measured by MEAs) correlate in any way with the subject's behavior?

Stimulation

1. Perception thresholds
Perception thresholds may be lower with microelectrodes because of high current density.
2. Percepts in higher visual areas
If the microelectrodes have smaller RFs or are more feature-selective than the large electrodes, it could mean that sending current through them would activate a more functionally-segregated group of neurons than has previously been possible. If so, microstimulation with microelectrodes may be more likely to evoke percepts in higher-level visual areas than with the large electrodes.


Ryan's Adaptation Experiments
1) Target-detection Selectivity – 20 minutes

• 80 stimuli (+5 target stimuli), 20 blocks
• Stop-sign task (patient reports stop-signs)

2) Repeat-detection Selectivity – 20 minutes

• 80 stimuli, 20 blocks
• One-back task (patient reports repetitions of images)

3) Multiple-repetitions adaptation - 5 minutes

• 20 selective stimuli, 20 nonselective stimuli, 2 Hz presentation, patient is told to press button when he/she sees the stopsign.
• trial structure: 8 nonselective stimuli, 8 of the same selective stimulus, 8 nonselective stimuli, 8 different selective stimuli. Stopsign appear at random or at the end of each run.
• A rudimentary way to approximate this would be to have several copies of the same image in the image folder, and selecting all of them in the selectivity plugin.


Notes:

• Now that we can record from all the electrodes simultaneously, it will be less important to identify selective categories. By showing equal amount of all the categories, we can get good sample sizes for several differently-selective electrodes.
•It would be nice to have a modified version of the current Selectivity plugin to satisfy these conditions:
1. the patient is supposed to press the button after stop-signs instead of after repeats
2. Selective stimuli are directly repeated every 8-12 images
3. The stimulus preceding the repeat is always a nonselective stimulus

Electrophysiology Protocols

Presurgical Scanning

After analysing fMRI data, upload the entire contents of the AFNI and SUMA directories to Xfiles. This can be simplfied by Apple-K (Connect to Server) in Finder and choosing XFiles;

 xfiles.hsc.uth.tmc.edu (129.106.148.217)

then the folders can be dragged from the server to Xfiles, or copied in the command line, easily (without using the Web-based GUI interface).


In the EMU

Setup Apparatus

Receptive Field Mapping

Electrical Stimulation

Selectivity

Perceptual Biasing

Adaptation

Making Grayscale From Color Images

It is also good to collect 10 minutes of resting data (no stimulation) from as many visual electrodes as possible for later analyses.

Todo list

Decide on screening stimuli i.e. pick 20 from each category faces, houses, bodies, scenes, tools, scrambles
Get rid of bad looking stimuli; make detailed protocol
Install matlab in EMU to allow image scrambling; install scrambling program.


1/16/2008 Add peak deflection (either -,+ or ABS) to RMS power measurement when ranking stimuli.


Processing Subject Data

see also Beauchamp:Electrode_Localization_and_Naming

After obtaining the CD containing the patient CT data from St. Luke's, use OsiriX to export all images (using the export to DICOM option, and the hierarchical, uncompress options).

CT scans have voxel size 0.488x0.488x1 mm; this may need to be adjusted manually with

 3drefit -zdel 1.000 DE_CTSDE+orig

(If the CTs look distorted in AFNI, then the voxel size must be adjusted). Next, the CTs must be registered with the hi-res presurgical MRI anatomy. This may fail because the CT has a coordinate system with a very different origin than the MRI. Registration routines will not work if the input datasets are not in rough alignment. To check this, type

 3dinfo DE_CTSDE+orig

returns

 R-to-L extent:  -124.756 [R] -to-   124.756 [L] -step-     0.488 mm [512 voxels]
 A-to-P extent:  -124.756 [A] -to-   124.756 [P] -step-     0.488 mm [512 voxels]
 I-to-S extent:  -258.000 [I] -to-   -86.000 [I] -step-     1.000 mm [173 voxels]

We want the center of the dataset to be roughly at (0,0,0). For this example, this is true for (x,y) but not for z. First, create a copy of the dataset

 3dcopy DE_CTSDE+orig DE_CTSDEshift

Then, recenter the z-axis

 3drefit -zorigin 80 DE_CTSDEshift+orig

3dinfo returns

 R-to-L extent:  -124.756 [R] -to-   124.756 [L] -step-     0.488 mm [512 voxels]
 A-to-P extent:  -124.756 [A] -to-   124.756 [P] -step-     0.488 mm [512 voxels]
 I-to-S extent:   -80.000 [I] -to-    92.000 [S] -step-     1.000 mm [173 voxels]

The z-axis is now roughly centered around 0. In AFNI, examine the MR and the shifted CT to make sure they are in rough alignment. Next, use 3dAllineate to align the two datasets.

 3dAllineate -base {$ec}anatavg+orig -source DE_CTSDEshift+orig -prefix {$ec}CTSDE_REGtoanatV4 -verb -warp shift_rotate -cost mutualinfo -1Dfile {$ec}CTSDE_REGtoanatXformV4

Check in AFNI to make sure that they alignment is correct. NB: It is also possible to crop the MRI before Allineating since the MR coverage is typically greater than the CT coverage. In a test case, this did not have a big effect.

Next, the electrodes positions are manually located and saved as Tags. Then, these positions can be used to create an Electrodes file for display as spheres in SUMA. To label the electrodes, a separate .niml.do file can be created with the label for each electrode. Sample file electrodes.1D

 #spheres
 -20.43       81.53       4.254  0.0 0.0 0.0 1.0  1.1   
 -28.43       76.84       4.254  0.0 0.0 0.0 1.0  1.1           
 -36.43       70.28       4.254  0.0 0.0 0.0 1.0  1.1             
 -42.43       61.84       4.254  0.0 0.0 0.0 1.0  1.1           
 -48.43       54.34       4.254  0.0 0.0 0.0 1.0  1.1            
 -52.43       44.03       4.254  0.0 0.0 0.0 1.0  1.1            

Sample file testelectrodeslabels.niml.do

 <nido_head
 coord_type = "mobile"
 default_SO_label = "CURRENT"
 bond = "surface"
   default_color = '1.0 1.0 1.0'
 default_font = 'he14'
 />
 <T
 coord = "-20.43       81.53       4.254"
 col = "0.1 0.9 0.1"
 text = "RPIT1"
 />
 />

Things to do

HumanImageDetection

Can stimuli be vector-based rather than pixel based, so as not to lose resolution with scaling? POSSIBLE if original file is vector-based
Enable online scrambling LOOKING INTO IT
Enable online color to black and white conversion LOOKING INTO IT

HumanLetterDetection

Analyze data from LR to see where the RFs are


DEBUGGING KNOT PROBLEMS

First, quit Knot. Then, unplug one ITC from the USB port, wait for the power light to go off, plug it back in. Repeat this, one at a time, for all ITCs. Before beginning experiment, always make sure you get nice traces in Channel Data window, not just flat lines (even if looks nice on oscilloscope).


1-AFC task: change feedback so that it is not always correct.

can we extend stimulation into the response window?

Measuring Impedance

From Nafi preamp should have a built-in impedance tester? That’s generally a good thing to have with low-impedance electrodes so that you can know what the actual impedance is as you’re recording since how the electrodes are placed can affect the functional impedance. But basically the way they work is that they have a parallel circuit which connects a resistor to the point that the preamp is measuring the voltage. At the other end of the resistor they pass an AC signal (a 1kHz sinusoid is standard), and based on the voltage you read on the preamp you can calculate the impedance; for instance if you’re using a 1MOhm resistor along with a 1V signal, and you read 10mV across the electrode, you’ll know your impedance is roughly 10k (0.10V = 1V*[R/(1M +R)] -> 0.99R = 10,000). To do it by hand you could use a function generator and an oscilloscope, just connect a resistor to where the electrode would connect to the preamp, put the electrodes in saline and apply a signal at the resistor with ground in the saline, and measure the voltage in between the resistor and the electrode using your scope.