BME494s2013 Project Template

From OpenWetWare

(Difference between revisions)
Jump to: navigation, search
(Human Practices)
Current revision (17:36, 22 April 2013) (view source)
(Testing: Modeling and GFP Imaging)
 
(2 intermediate revisions not shown.)
Line 93: Line 93:
-
'''COLLECTING IMPERICAL VALUES TO IMPROVE THE MODEL'''
+
'''COLLECTING EMPIRICAL VALUES TO IMPROVE THE MODEL'''
<br>
<br>
We explored how one technique, imaging via microscopy could be used to determine the production rate of an output protein, in this case GFP in yeast, could be used to determine a "real" value for maximum GFP production rate under our own laboratory conditions.
We explored how one technique, imaging via microscopy could be used to determine the production rate of an output protein, in this case GFP in yeast, could be used to determine a "real" value for maximum GFP production rate under our own laboratory conditions.
Line 103: Line 103:
-
<br>
 
-
'''CONCLUSION'''
 
-
<br>
+
 
 +
<br><br><br><br><br><br><br><br>
==Human Practices==
==Human Practices==
Line 171: Line 170:
[3] Full reference.
[3] Full reference.
 +
 +
 +
|}

Current revision


Image:BME494Sp2013_banner.png
Image:BME494_Asu_logo.png

Home        People        Course Projects        Course Materials        Schedule        Photos        Wiki Editing Help

      

Contents

Overview & Purpose

Text describing the image
Text describing the image












Background

Text describing the image
Text describing the image














Design: Our genetic circuit

OUR GENE SWITCH:


Text describing the image












Building: Assembly Scheme













Testing: Modeling and GFP Imaging


A LAC SWITCH MODEL
We used a previously published synthetic switch, developed by Ceroni et al., to understand how our system could potentially be modeled and simulated.


AN INTERACTIVE MODEL
We used a model of the natural Lac operon to understand how changing the parameter values changes the behavior of the system.


COLLECTING EMPIRICAL VALUES TO IMPROVE THE MODEL
We explored how one technique, imaging via microscopy could be used to determine the production rate of an output protein, in this case GFP in yeast, could be used to determine a "real" value for maximum GFP production rate under our own laboratory conditions.



Ideally, the GFP production rate measured by this method could be entered as a value for [which parameter] in the Ceroni et al. model.











Human Practices

Danger of Chemicals in Farmlands
Danger of Chemicals in Farmlands














Our Team

Your Name
Your Name


  • My name is ###, and I am a ### majoring in ###. I am taking BME 494 because ###. An interesting fact about me is that ###.



Your Name
Your Name


  • My name is ###, and I am a ### majoring in ###. I am taking BME 494 because ###. An interesting fact about me is that ###.



Your Name
Your Name


  • My name is ###, and I am a ### majoring in ###. I am taking BME 494 because ###. An interesting fact about me is that ###.



Your Name
Your Name


  • My name is ###, and I am a ### majoring in ###. I am taking BME 494 because ###. An interesting fact about me is that ###.






Works Cited

[1] Full reference.

[2] Full reference.

[3] Full reference.


Personal tools