BME103:T130 Group 7 l2: Difference between revisions

From OpenWetWare
Jump to navigationJump to search
No edit summary
Line 81: Line 81:


<!---Polymerase Chain Reaction
<!---Polymerase Chain Reaction
To amplify samples of DNA, the OpenPCR machine was used to perform a Polymerase Chain Reaction (PCR). This technique worked by cycling a mixture of DNA Template, Primers, Taq Polymerase, Magnesium Chloride, and dNTP's through three specific temperatures to create more copies of the desired sequence. After assembling the PCR mixture, the PCR machine was programmed to perform three stages. In the first stage, the samples went through one cycle at 95⁰C for 3 minutes. The purpose of this stage was to initially denature the DNA and allow the primers to act on the DNA. The second stage put the samples through 35 cycles of 95⁰C, 57⁰C, and 72⁰C each for 30 seconds. The purpose of the first part of the second stage is to break apart the hydrogen bonds between the base pairs, denaturing the DNA sequence into two separate strands. The purpose of the low temperature is to allow primers to bind. The purpose of the middle temperature is to create an environment for Taq Polymerase to assemble a new strand that is the desired product of the entire polymerase chain reaction. The last stage, stage three, puts the samples through one cycle of 72⁰C for 3 minutes. There is a final hold of 4⁰C that preserves the DNA. The samples were then taken out of the PCR machine. The target sequence had been amplified a million times and could now be analyzed with less sensitive equipment! To analyze the sequence, see the Fluorimeter section. ---!>
To amplify samples of DNA, the OpenPCR machine was used to perform a Polymerase Chain Reaction (PCR). This technique worked by cycling a mixture of DNA Template, Primers, Taq Polymerase, Magnesium Chloride, and dNTP's through three specific temperatures to create more copies of the desired sequence. After assembling the PCR mixture, the PCR machine was programmed to perform three stages. In the first stage, the samples went through one cycle at 95⁰C for 3 minutes. The purpose of this stage was to initially denature the DNA and allow the primers to act on the DNA. The second stage put the samples through 35 cycles of 95⁰C, 57⁰C, and 72⁰C each for 30 seconds. The purpose of the first part of the second stage is to break apart the hydrogen bonds between the base pairs, denaturing the DNA sequence into two separate strands. The purpose of the low temperature is to allow primers to bind. The purpose of the middle temperature is to create an environment for Taq Polymerase to assemble a new strand that is the desired product of the entire polymerase chain reaction. The last stage, stage three, puts the samples through one cycle of 72⁰C for 3 minutes. There is a final hold of 4⁰C that preserves the DNA. The samples were then taken out of the PCR machine. The target sequence had been amplified a million times and could now be analyzed with less sensitive equipment! To analyze the sequence, see the Fluorimeter section. --->





Revision as of 15:58, 15 November 2012

BME 103 Fall 2012 Home
People
Lab Write-Up 1
Lab Write-Up 2
Lab Write-Up 3
Course Logistics For Instructors
Photos
Wiki Editing Help

OUR TEAM

Name: Emily Thompson
Research & Development Scientist
Name: Vivian Benjes
Experimental Protocol Planner/ Data Analyst
Name: Frances Marrett
Experimental Protocol Planner
Name: Chris Glass
Open PCR Machine Engineer
Name: Ryan Frantz
Open PCR Machine Engineer
[1]
Name: Cenric Nigbur
Ghost/ TBD

LAB 2 WRITE-UP

Thermal Cycler Engineering

Our re-design is based upon the Open PCR system originally designed by Josh Perfetto and Tito Jankowski.


System Design


Key Features


Instructions





Protocols

Materials


Supplied in the Kit

Thermal Cycler for PCR reaction
Qiagen Fast Cycling PCR kit (50)
BioRad Real Time PCR Applications Guide


Supplied by User

Sterile gloves
Access to 120V electrical outlet
10 uL pipette
Eppendorf tube block

PCR Protocol



DNA Measurement Protocol

Research and Development

Background on Disease Markers
Alzheimer's disease, a form of dimentia in which brain function is lost gradually over time, is associated with the SNP rs121918396. The sequence associated with Alzheimer's is TAG, while a normal sequence is TGG.



Primer Design



Illustration