BME103:T130 Group 15: Difference between revisions

From OpenWetWare
Jump to navigationJump to search
Line 53: Line 53:
# (Jim Dorsey) Polymerase Chain Reaction. http://www.contexo.info/DNA_Basics/polymerase_chain_reaction.htm. Last accessed 11/01/12.
# (Jim Dorsey) Polymerase Chain Reaction. http://www.contexo.info/DNA_Basics/polymerase_chain_reaction.htm. Last accessed 11/01/12.
)<br>
)<br>





Revision as of 15:37, 1 November 2012

BME 103 Fall 2012 Home
People
Lab Write-Up 1
Lab Write-Up 2
Lab Write-Up 3
Course Logistics For Instructors
Photos
Wiki Editing Help

OUR TEAM

Name: Malik Alnaim
Role: Research & Development Scientist
Name: Alyssa Alexander
Role: Research & Development Scientist
Name: Sichun Ai
Role: Experimental Protocol Planner
Name: Nehal Jolly
Role: Experimental Protocol Planner
Name: Ben Reising
Role: Open PCR machine Engineer
Name: Mayuri Gupta
Role: Open PCR machine Engineer

LAB 1 WRITE-UP

Initial Machine Testing

The Original Design
(Add image of the full OpenPCR machine here, from the Week 3 exercise. Write a paragraph description for visitors who have no idea what this is)


Experimenting With the Connections

When we unplugged (part 3) from (part 6), the machine ... (did what? fill in your answer)

When we unplugged the white wire that connects (part 6) to (part 2), the machine ... (did what? fill in your answer)


Test Run

(Write the date you first tested Open PCR and your experience(s) with the machine)




Protocols

Polymerase Chain Reaction

(Polymerase chain reaction is basically molecular photocopying and the process or technique used to make copies of small segments of DNA because it only targets specific segments of the DNA and that's what makes it useful. PCR works by mixing two DNA fragments, also known as primers which are about 20 bases long. The mixture is then heated and denatured and then the primers bind to their complementary sequences on the separated strands, and it goes through about 30 cycles.

  1. (Jim Dorsey) Polymerase Chain Reaction. http://www.contexo.info/DNA_Basics/polymerase_chain_reaction.htm. Last accessed 11/01/12.

)




Flourimeter Measurements

(Add your work from Week 3, Part 2 here)




Research and Development

Specific Cancer Marker Detection - The Underlying Technology

(Add a write-up of the information discussed in Week 3's class)

(BONUS points: Use a program like Powerpoint, Word, Illustrator, Microsoft Paint, etc. to illustrate how primers bind to the cancer DNA template, and how Taq polymerases amplify the DNA. Screen-captures from the OpenPCR tutorial might be useful. Be sure to credit the source if you borrow images.)




Results

(Your group will add the results of your Fluorimeter measurements from Week 4 here)