BME100 f2014:Group29 L6

From OpenWetWare
Jump to navigationJump to search
BME 100 Fall 2014 Home
People
Lab Write-Up 1 | Lab Write-Up 2 | Lab Write-Up 3
Lab Write-Up 4 | Lab Write-Up 5 | Lab Write-Up 6
Course Logistics For Instructors
Photos
Wiki Editing Help


OUR COMPANY

Name: Amanda Smith
Name: Blake Morrow
Name: Mitchell Durbin
Name: student
Name: student
Name: student


LAB 6 WRITE-UP

Bayesian Statistics

Overview of the Original Diagnosis System


What Bayes Statistics Imply about This Diagnostic Approach


Computer-Aided Design

TinkerCAD


Our Design



The improvements made to the OpenPCR is that the Flourimeter is now combined and attached to the PCR machine. The PCR machine is a closed box and the samples are placed on a tray and then slid into the machine from the side and not placed on top like the previous design. Having the samples completely enclosed by the machine allows the process to happen more quickly because the samples will be heated and cooled from all sides, and not just the bottom like with the previous design. Once the PCR is done, the tray can be removed and then placed onto the attached Flourimeter. The Flourimeter will have light already shining on the samples, and the lid of the Flourimeter will have cameras that will be already calibrated and have a standard distance. The Flourimeter will also be able to be connected to a computer so the imagines can be processed. The only changes that will have to be made to the lab is that the SBYRGreen can be added prior to the PCR machine, or it can be added right after, but before the Flourimeter. Also, once the samples have gone through the PCR machine, their lids will need to be removed so that the cameras on the lid of the Flourimeter can have a clear unobstructed view of the samples.

Feature 2: Consumables Kit

Our consumables will be packaged in a plastic tray in a styrofoam block to ensure they are not damaged in transport. The consumables in the kit will consist of:

  • Gloves
  • SYBR Green
  • Taq Polymerase
  • Micropipette
  • Tips for Micropipette
  • Primer

The plastic tray will also be labelled so as the materials can be placed back in it when they are not in use. This will prevent any mixing up of the reagents. The reagents will be pre-measured in small plastic tubes.

The pre-measurement of the reagents will prevent human error during mixing. One would simply have to pipette all of the reagent from the plastic tube to the tube being used for the PCR.

Feature 3: Hardware - PCR Machine & Fluorimeter

For this product, both the fluorimeter and PCR machines have been combined into one, easy to run system. The way this device is set up, is that the test tubes with the DNA are inserted into a rack in the first box labelled PCR. After all of the essential parts have been added to the samples, including the parts needed for the fluorimeter, and the PCR has been completed, the tubes are then moved to the subsequent box labelled Fluorimeter. The tubes are placed into a rack on the side of the device, just like the PCR machine, and individual cameras are attached to the top of the rack. Blue light illuminates every sample from the sides. After the hatch is shut and the device is turned on, the camera's will take three individual photos of every tube and download them to a file on the computer that the device is attached to.

This change in design eliminates human error because the device is completely machine operated. There is no pipetting, and, really, no area for error other than a malfunction in the device. The only possible human error could come from the initial step of the samples being added to the test tubes before the samples enter the device at all. Also, this design cuts down on time because nothing has to really be set up for the fluorimeter. Everything comes pre-calibrated and everything is already set up in the device.